Flexible Supercapacitor Nanoarchitectonics
Inbunden, Engelska, 2021
Av Inamuddin, Mohd Imran Ahamed, Rajender Boddula, Tariq Altalhi, India) Ahamed, Mohd Imran (Aligarh Muslim University, Aligarh, Beijing)) Boddula, Rajender (National Center for Nanoscience and Technology (NCNST
3 719 kr
Produktinformation
- Utgivningsdatum2021-08-20
- Mått10 x 10 x 10 mm
- Vikt454 g
- SpråkEngelska
- Antal sidor672
- FörlagJohn Wiley & Sons Inc
- EAN9781119711452
Du kanske också är intresserad av
Green Adhesives
Inamuddin, Rajender Boddula, Mohd Imran Ahamed, Abdullah M. Asiri, Beijing)) Boddula, Rajender (National Center for Nanoscience and Technology (NCNST, India) Ahamed, Mohd Imran (Aligarh Muslim University, Aligarh, Saudi Arabia) Asiri, Abdullah M. (King Abdulaziz University, Jeddah, Abdullah M Asiri
2 559 kr
Polymers for Light-emitting Devices and Displays
Inamuddin, Rajender Boddula, Mohd Imran Ahamed, Abdullah M. Asiri, Beijing)) Boddula, Rajender (National Center for Nanoscience and Technology (NCNST, India) Ahamed, Mohd Imran (Aligarh Muslim University, Aligarh, Saudi Arabia) Asiri, Abdullah M. (King Abdulaziz University, Jeddah, Abdullah M Asiri
2 659 kr
Tillhör följande kategorier
Inamuddin PhD is an assistant professor at King Abdulaziz University, Jeddah, Saudi Arabia and is also an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy and environmental science. He has published about 150 research articles in various international scientific journals, 18 book chapters, and edited 60 books with multiple well-known publishers.Mohd Imran Ahamed PhD is in the Department of Chemistry, Aligarh Muslim University, Aligarh, India. He has published several research and review articles in SCI journals. His research focuses on ion-exchange chromatography, wastewater treatment and analysis, actuators and electrospinning.Rajender Boddula PhD is currently working for the Chinese Academy of Sciences President’s International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals, edited books with numerous publishers and has authored 20 book chapters.Tariq Altalhi PhD is Head of the Department of Chemistry and Vice Dean of Science College at Taif University, Saudi Arabia. He received his PhD from the University of Adelaide, Australia in 2014. His research interests include developing advanced chemistry-based solutions for solid and liquid municipal waste management, converting plastic bags to carbon nanotubes, and fly ash to efficient adsorbent material.
- Preface xvii1 Electrodes for Flexible Integrated Supercapacitors 1Sajid ur Rehman and Hong Bi1.1 Introduction and Overview of Supercapacitors 21.2 Electrode Materials for Flexible Supercapacitors 41.2.1 Carbon Materials 41.2.1.1 Activated Carbon 41.2.1.2 Carbon Nanotubes 51.2.1.3 Graphene 61.2.1.4 Carbon Aerogels 81.2.1.5 Graphene Hydrogel 81.2.2 Conducting Polymers 101.2.3 Metal Compounds 131.2.3.1 Ruthenium Oxide (RuO2) Electrode Material 141.2.3.2 Nickel Oxide (NiO) Electrode Material 151.2.3.3 Copper Oxide (CuO) Electrode Material 161.2.3.4 Composite Electrode Materials 171.3 Device Architecture of Flexible Supercapacitor 181.4 Integration of Flexible Supercapacitors 191.5 Conclusion 21References 222 Flexible Supercapacitors Based on Fiber-Shape Electrodes 27Faiza Bibi, Muhammad Inam Khan, Abdur Rahim, Nawshad Muhammad and Lucas S.S. Santos2.1 Introduction 272.2 Supercapacitors 292.2.1 Electrochemical Supercapacitor 292.2.2 Flexible Supercapacitors 302.3 Shape Dependent Flexible Electrodes 312.3.1 Porous 3D Flexible Electrodes 322.3.2 Flexible Paper Electrodes 322.3.3 Flexible Fiber Electrodes 332.4 Fiber Shape Electrodes (FE/FSC) 342.4.1 Wrapping Fiber Shape Electrode/Supercapacitors 342.4.2 Coaxial Fiber Shape Electrode/Supercapacitor 352.4.3 Parallel Fiber Shape Electrode/Supercapacitor 362.4.4 Twisted Fiber Shape Electrode/Supercapacitor 372.4.5 Rolled Fiber Shape Electrode/Supercapacitors 382.5 Conclusion 39References 403 Graphene-Based Electrodes for Flexible Supercapacitors 43Jyoti Raghav, Sapna Raghav and Pallavi Jain3.1 Introduction 433.2 Type of SCs 443.2.1 EDLC 443.2.2 PCs 453.2.3 Flexible Graphene-Based Nano Composites 453.3 Fabrication Techniques for the Electrode Materials 463.3.1 Electrodeposition 463.3.2 Direct Coating (DC) 463.3.3 Chemical Vapor Deposition (CVD) 483.3.4 Hydrothermal 483.4 Substrate Materials for the Flexible SCs 483.5 Graphene Nanocomposite-Based Electrode Materials 493.5.1 Additives/Graphene Electrodes 493.5.2 Binder/Graphene Electrodes 493.5.3 Pure Graphene Electrode 503.5.4 Conductive Polymers/Graphene Composites Electrode 503.5.5 Metal or Metal Oxides (MOs) Composite Electrodes 513.6 NSs for the Flexible SC 523.7 Conclusion 53Acknowledgment 54References 544 Polymer-Based Flexible Substrates for Flexible Supercapacitors 59Zul Adlan Mohd Hir, Shaari Daud, Hartini Ahmad Rafaie, Nurul Infaza Talalah Ramli and Mohamad Azuwa Mohamed4.1 Introduction 604.2 Polymers-Based Flexible Materials for Flexible Supercapacitors 614.3 Synthesis and Fabrication Approach of the Polymer-Based Electrode 624.3.1 Preparation of Polymer-Based Electrode Materials 624.3.1.1 Polyaniline (PANI) 634.3.1.2 Polypyrrole (PPy) 654.3.1.3 Poly (3,4-ethylenedioxythiophene) (PEDOT) 664.3.2 Electrode Fabrication 694.4 Physicochemical Characterization of Flexible Supercapacitors 704.4.1 Scanning Electron Microscopy 704.4.2 Transmission Electron Microscopy 714.4.3 X-Ray Diffraction 734.4.4 Surface Area Analysis by BET (Brunauer, Emmett and Teller) 754.4.5 X-Ray Photoelectron Spectroscopy (XPS) 784.5 Recent Findings on the Performance of Flexible Supercapacitors 794.5.1 Electrochemical Double-Layer Capacitor (EDLC) 804.5.2 Pseudocapacitor 814.5.3 Hybrid Supercapacitor 834.6 Conclusion 86References 875 Carbon Substrates for Flexible Supercapacitors and Energy Storage Applications 95Seyyed Mojtaba Mousavi, Seyyed Alireza Hashemi, Najmeh Parvin, Chin Wei Lai, Sonia Bahrani, Wei-Hung Chiang and Sargol Mazraedoost5.1 Introduction 965.2 Overview of the Energy Storage System 985.3 Capacitors Modeling 1095.3.1 Equivalent Circuit Models 1205.3.2 Intelligent Models 1215.3.3 Self-Discharge 1225.3.4 Fractional-Order Models 1225.3.5 Thermal Modeling 1235.4 Industrial Applications of Capacitors 1245.4.1 Power Electronics 1245.4.2 Uninterruptible Power Supplies 1255.4.3 Hybrid Energy Storage 1265.5 Conclusions 127References 1276 Organic Electrolytes for Flexible Supercapacitors 143Younus Raza Beg, Gokul Ram Nishad and Priyanka Singh6.1 Introduction 1436.2 Organic Electrolytes 1456.3 Solid and Quasi-Solid-State Electrolytes 1506.3.1 PVA-Based Gel Electrolytes 1546.3.2 PEG-Based Gel Electrolytes 1566.3.3 PVDF-Based Gel Electrolytes 1576.4 Ionic Liquids-Based Electrolytes 1596.5 Redox Active Electrolytes 1656.6 Conclusion 167References 1707 Carbon-Based Electrodes for Flexible Supercapacitors Beyond Graphene 177Sunil Kumar and Rashmi Madhuri7.1 Introduction 1787.2 Materials Used to Prepare Flexible Supercapacitors 1797.2.1 Carbon Materials 1807.2.1.1 Activated Carbon (AC) 1807.2.1.2 Carbon Nanotubes (CNTs) 1807.2.1.3 Graphene 1817.2.1.4 Carbon Aerogel 1817.2.2 Conducting Polymer 1817.2.3 Metal Oxide 1827.3 The Carbon-Based Electrode Used for Flexible Supercapacitors 1827.3.1 Carbon Nanotube (CNT)-Based Materials 1827.3.1.1 CNT-Conducting Polymer Composite as Supercapacitors 1827.3.1.2 CNT–Metal Oxide Composite as Supercapacitors 1857.3.2 Activated Carbon-Based Materials 1917.3.2.1 Activated Carbon-Conducting Polymer Composite as a Supercapacitor 1917.3.2.2 Activated Carbon–Metal Oxide Composite as a Supercapacitor 1957.4. Conclusion 201References 2018 Biomass-Derived Electrodes for Flexible Supercapacitors 211Selvasundarasekar Sam Sankar and Subrata Kundu8.1 Introduction 2118.1.1 Electrode Materials for Flexible Supercapacitors 2138.2 Biomass-Derived Carbon Materials 2148.2.1 Activation 2148.2.1.1 Physical Activation 2158.2.1.2 Chemical Activation 2158.2.1.3 Other Activation 2188.2.2 Carbonization 2188.2.2.1 Hydrothermal Method 2188.2.2.2 Pyrolysis Method 2198.3 Incorporation of Biomass-Based Electrodes in Flexible Supercapacitors 2208.4 Challenges for Using Biomass-Derived Materials 2228.5 Conclusion 224References 2259 Conducting Polymer Electrolytes for Flexible Supercapacitors 233Aqib Muzaffar, M. Basheer Ahamed and Kalim Deshmukh9.1 Introduction 2349.2 Components of a Supercapacitor 2369.2.1 Electrodes 2369.2.2 Electrolytes 2379.2.3 Separator 2389.2.4 Current Collectors 2399.2.5 Sealants 2399.3 Configuration of a Supercapacitor 2409.4 Conducting Polymer Electrolytes 2419.4.1 Gel Conducting Polymer Electrolytes 2439.4.2 Ionic Liquid-Based Conducting Polymer 2469.4.3 OH− Ion Conducting Polymers 2479.5 Conclusion 252References 25210 Inorganic Electrodes for Flexible Supercapacitor 263Muhammad Inam Khan, Faiza Bibi, Muhammad Mudassir Hassan, Nawshad Muhammad, Muhammad Tariq and Abdur Rahim10.1 Introduction 26410.2 Flexible Inorganic Electrode Based on Carbon Nanomaterial 26510.2.1 Carbonaceous Material 26510.2.1.1 Graphene 26610.2.1.2 Graphene Oxide-Based Electrodes 26810.2.1.3 Carbon Nanotubes 26910.2.1.4 Carbon Films/Textiles 27110.3 Conclusion 272References 27311 New-Generation Materials for Flexible Supercapacitors 277P.E. Lokhande, U.S. Chavan, Suraj Bhosale, Amol Kalam and Sonal Deokar11.1 Introduction 27711.2 Taxonomy of Supercapacitor 27811.3 Fundamentals of Supercapacitor 28011.4 Flexible Supercapacitor 28211.4.1 Graphene-Based Flexible Supercapacitor 28211.4.2 Metal Oxide/Hydroxide-Based Flexible Supercapacitor 28411.4.3 Conducting Polymer-Based Flexible Supercapacitor 29011.5 Outlook and Perspectives 298Acknowledgement 303References 30312 Asymmetric Flexible Supercapacitors: An Overview of Principle, Materials and Mechanism 315Sabina Yeasmin and Debajyoti Mahanta12.1 Introduction: Why Store Energy? 31612.2 Supercapacitor: A Green Approach Towards Energy Storage 31612.3 Flexible Supercapacitors 31912.3.1 Solid Electrolytes 32012.3.2 Flexible Electrodes 32212.3.3 Cell Designs for Flexible Supercapacitor 32412.4 Asymmetric Supercapacitor 32512.4.1 Principle, Material and Mechanism 32512.4.2 Performance Evaluation in Asymmetric Supercapacitor 33012.5 Recent Advances in Flexible Asymmetric Supercapacitors 33312.6 Conclusion 335References 33513 Aqueous Electrolytes for Flexible Supercapacitors 349Dipanwita Majumdar13.1 Introduction 35013.1.1 Influence of Electrolytes on Performance of Supercapacitors 35213.1.2 What is an Ideal Electrolyte? 35413.1.3 Classes of Electrolytes for Supercapacitors 35513.2 Electrolyte Performance-Controlling Parameters for Designing Flexible Supercapacitors 35713.2.1 Large Electrochemical Stability 35713.2.2 High Ionic Conductivity 35713.2.3 Nature of Electrolyte 35813.2.4 Dielectric Constant and Viscosity of Solvent 35813.2.5 Low Melting and High Boiling Points 35913.2.6 High Chemical Stability 36013.2.7 High Flash Point 36013.2.8 Low Cost and Availability 36013.2.9 Influence of Pressure 36013.2.10 Influence of Binder 36113.3 Why Aqueous Electrolytes? 36213.4 Acid Electrolytes 36313.4.1 EDLC and Pseudocapacitor Electrode Materials Employing H2SO4 Aqueous Electrolyte 37513.4.2 H2SO4 Electrolyte-Based Nanocomposite Electrode Material Supercapacitors 37713.4.3 H2SO4 Electrolyte-Based Hybrid Supercapacitors 37713.5 Alkaline Electrolytes 37813.5.1 Alkaline Electrolyte-Based EDLC and Pseudocapacitors 37913.5.2 Alkaline Electrolyte-Based Nanocomposite Supercapacitors 38113.5.3 Alkaline Electrolyte-Based Hybrid Supercapacitors 38313.6 Neutral Electrolyte 38313.6.1 Neutral Salt Aqueous Electrolyte-Based EDLC and Pseudocapacitors 38413.6.2 Neutral Salt Aqueous Electrolyte-Based Nanocomposite Supercapacitors 38713.6.3 Neutral Electrolyte-Based Hybrid Supercapacitors 38813.7 Comparative Electrochemical Performances in Different Aqueous Electrolytes 38813.8 Water-in-Salt Electrolytes for Flexible Supercapacitors 39413.9 Conclusion and Future Prospects 395Acknowledgements 396References 39614 Electrodes for Flexible Micro-Supercapacitors 413Subrata Ghosh, Jiacheng Wang, Gustavo Tontini and Suelen Barg14.1 Introduction 41314.2 Electrode Configurations 41414.2.1 Sandwich μSCs 41414.2.2 Fiber or Wire μSC 41514.2.2.1 Parallel 41614.2.2.2 Twisted or Two-Ply 41714.2.2.3 Coaxial 41714.2.2.4 Rolled 41714.2.2.5 All-in-One 41814.2.3 Interdigitated μSCs 41814.3 Manufacturing Techniques 42114.3.1 Photolithography 42114.3.2 Electrodeposition 42214.3.3 Laser Direct-Writing 42214.3.3.1 Laser Carving 42314.3.3.2 Laser Scribing 42314.3.3.3 Laser Transfer Method 42414.3.4 Printing 42514.3.4.1 Screen Printing 42614.3.4.2 Inkjet Printing 42714.3.4.3 3D Printing 42814.4 State-of-the-Art Electrode Materials 43114.4.1 Nanocarbons 43114.4.2 MXenes 43314.4.3 Transition-Metal Chalcogenides 43514.4.4 Metal-Based Materials 43514.4.5 Conducting Polymers 43814.4.6 Composites or Hybrid Structures 44014.4.7 Symmetric vs Asymmetric 44114.5 Conclusion and Outlook 445Acknowledgement 446References 44715 Electrodes for Flexible Self-Healable Supercapacitors 461Ayesha Taj, Rabisa Zia, Sumaira Younis, Hunza Hayat, Waheed S. Khan and Sadia Z. Bajwa15.1 Introduction 46215.1.1 Supercapacitors 46315.1.2 Electric Double Layer Capacitors (EDLCs) 46415.1.3 Hybrid Capacitors 46715.2 Self-Healable Nanomaterials 46815.2.1 Metallic Nanomaterials 46815.2.2 Non-Metallic/Carbon-Based Nanomaterials 47015.2.3 Conducting Polymer-Based Nanomaterials 47115.3 Nanomaterials-Based Interfaces for Supercapacitors 47215.3.1 Metal Nanomaterials-Based Interfaces for Supercapacitors 47315.3.2 Graphene-Based Interfaces for Self-Healable Supercapacitors 47415.3.3 CNT/GO/PANI Composites Supercapacitors 47815.4 Conclusion 479References 48016 Electrodes for Flexible–Stretchable Supercapacitors 485Ravi Arukula, Pawan K. Kahol and Ram K. Gupta16.1 Introduction 48616.1.1 Supercapacitors and Energy Storage Mechanisms 48716.1.2 Flexible/Stretchable Supercapacitors 48916.2 Electrodes for Flexible/Stretchable Supercapacitors 49016.2.1 Metal Oxide-Based Flexible/Stretchable Supercapacitors 49116.2.1.1 Vanadium-Based Flexible Electrodes 49316.2.1.2 Manganese-Based Flexible/Stretchable Electrodes 49416.2.1.3 Ruthenium-Based Flexible Electrodes 49616.2.1.4 Other Metal Oxides-Based Flexible Electrodes 49816.2.2 2D Materials-Based Flexible/Stretchable Supercapacitors 49916.2.3 Carbon-Based Flexible/Stretchable Supercapacitors 50416.2.4 Conductive Polymer-Based Flexible/Stretchable Supercapacitors 50516.2.5 Hybrid Composites-Based Flexible/Stretchable Supercapacitors 50716.3 Conclusion and Future Remarks 511References 51217 Fabrication Approaches of Energy Storage Materials for Flexible Supercapacitors 533Mohan Kumar Anand Raj, Rajasekar Rathanasamy, Prabhakaran Paramasivam and Santhosh SivarajAbbreviations 53317.1 Intoduction 53417.2 Classification of Flexible Supercapacitors 53617.2.1 Materials 53617.2.1.1 Carbon 53617.2.1.2 Metal Oxides 53717.2.1.3 Conducting Polymers 53717.2.1.4 Composites 53717.2.2 Fabrication Methods 53817.2.2.1 Electro-Chemical Deposition Method 53817.2.2.2 Chemical Bath Deposition (CBD) Process 53917.2.2.3 Inkjet Printing 54017.2.2.4 Spray Deposition Method 54117.2.2.5 Sol–Gel Technique 54217.2.2.6 Direct Writing Method 54317.3 Conclusion 544References 54518 Nature-Inspired Electrodes for Flexible Supercapacitors 549Aqib Muzaffar, M. Basheer Ahamed and Kalim Deshmukh18.1 Introduction 54918.2 Energy Storing Mechanism of Supercapacitors 55218.2.1 Electrostatic Double Layer Capacitor (EDLC) 55418.2.2 Pseudocapacitor 55518.2.3 Hybrid Supercapacitor 55618.3 Flexible Supercapacitors 55718.4 Essential Parameters of Supercapacitors 56018.4.1 Energy Density Parameter 56018.4.2 Power Density Parameter 56118.5 Natural Flexible Supercapacitors 56118.6 Conclusion 565References 56519 Ionic Liquid Electrolytes for Flexible Supercapacitors 575Udaya Bhat K. and Devadas Bhat PanemangaloreAbbreviations 57519.1 Introduction 57719.2 Mobile Energy Storage Systems and Supercapacitors 57819.3 Flexible Supercapacitors: Need and Challenges 58019.4 Developments in the Design of a Supercapacitor 58119.5 Electrolytes for Flexible Supercapacitors 58319.5.1 Aqueous Electrolytes 58319.5.2 Solid Electrolytes 58419.5.3 Liquid Electrolytes 58419.5.4 Ionic Liquid (IL) Electrolytes 58519.6 Gel Polymer Electrolytes (GPEs) 58619.7 Development in ILEs 58819.8 Design Flexibility With IL Electrolytes 59419.9 Electrolyte–Electrode Hybrid Design 59619.10 Ionic Liquid Electrolytes and Problem of Leakage 59719.11 Mechanical Stability of ILs 59719.12 Conclusions 598References 59820 Conducting Polymer-Based Flexible Supercapacitor Devices 611nand I. Torvi, Satishkumar R. Naik, Sachin N. Hegde, Mohemmedumar Mulla, Ravindra R. Kamble, Geoffrey R. Mitchell and Mahadevappa Y. Kariduraganavar20.1 Introduction 61220.2 Principles of Supercapacitor 61220.3 Classification of Supercapacitors 61320.3.1 Electrochemical Double-Layer Capacitors 61320.3.2 Pseudocapacitors 61320.3.2.1 Conducting Polymers 61420.4 Conducting Polymer-Based Flexible Supercapacitors 61520.4.1 Polyaniline-Based Flexible Supercapacitors 61620.4.2 Polypyrrole-Based Flexible Supercapacitors 61820.4.3 Polythiophene and its Derivatives-Based Flexible Supercapacitors 62120.5 Electrolytes for Flexible Supercapacitors 62420.6 Conclusions and Future Perspectives 626Acknowledgements 626References 626Index 635