Green and Sustainable Advanced Materials, Volume 1
Processing and Characterization
Inbunden, Engelska, 2018
Av Shakeel Ahmed, Chaudhery Mustansar Hussain, India) Ahmed, Shakeel (Jamia Millia Islamia, USA) Hussain, Chaudhery Mustansar (New Jersey Institute of Technology (NJIT)
3 089 kr
Produktinformation
- Utgivningsdatum2018-10-02
- Mått10 x 10 x 10 mm
- Vikt454 g
- SpråkEngelska
- Antal sidor378
- FörlagJohn Wiley & Sons Inc
- EAN9781119407041
Du kanske också är intresserad av
Nanomaterials
Suvardhan Kanchi, Shakeel Ahmed, Myalowenkosi I. Sabela, Chaudhery Mustansar Hussain, South Africa) Kanchi, Suvardhan (Durban University of Technology, India) Ahmed, Shakeel (Government Degree College Mendhar, South Africa) Sabela, Myalowenkosi I. (Durban University of Technology, USA) Hussain, Chaudhery Mustansar (New Jersey Institute of Technology (NJIT), Myalowenkosi I Sabela
3 089 kr
Functionalized Nanomaterials for Electronic and Optoelectronic Devices
Gopal Rawat, Gautam Patel, Kalim Deshmukh, Chaudhery Mustansar Hussain, India) Rawat, Gopal (Bharatah Cryogenics Pvt. Ltd., Uttar Pradesh, India) Patel, Gautam (Parul University, Vadodara, Gujarat, Czech Republic) Deshmukh, Kalim (University of West Bohemia, Pilsen, USA) Hussain, Chaudhery Mustansar (New Jersey Institute of Technology (NJIT)
3 529 kr
Functionalized Magnetic Nanoparticles for Theranostic Applications
Mayank Pandey, Kalim Deshmukh, Chaudhery Mustansar Hussain, India) Pandey, Mayank (Kristu Jayanti College, Czech Republic) Deshmukh, Kalim (University of West Bohemia, USA) Hussain, Chaudhery Mustansar (New Jersey Institute of Technology (NJIT)
3 699 kr
Sample Preparation with Nanomaterials
Chaudhery Mustansar Hussain, Rustem Kecili, Chaudhery Ghazanfar Hussain, USA) Hussain, Chaudhery Mustansar (New Jersey Institute of Technology (NJIT), Turkey) Kecili, Rustem (Anadolu University, Pakistan) Hussain, Chaudhery Ghazanfar (University of Lahore
1 889 kr
Additively Manufactured Electrochemical Sensors
Jamballi G. Manjunatha, Chaudhery Mustansar Hussain, India) Manjunatha, Jamballi G. (FMKMC College, A Constituent College of Mangalore University, Madikeri, USA) Hussain, Chaudhery Mustansar (New Jersey Institute of Technology (NJIT), Jamballi G Manjunatha
3 239 kr
Tillhör följande kategorier
Shakeel Ahmed is a Research Fellow at Bio/Polymers Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi. He obtained his PhD in the area of biopolymers and bionanocomposites. He has published several research publications in the area of green nanomaterials and biopolymers for various applications including biomedical, packaging, sensors, and water treatment. He is an associate member of the Royal Society of Chemistry (RSC), UK and life member of the Asian Polymer Association and Society of Materials Chemistry. Chaudhery Mustansar Hussain, is an Adjunct Professor, an Academic Advisor and Director of Laboratories in the Department of Chemistry & Environmental Sciences at the New Jersey Institute of Technology (NJIT), Newark, New Jersey, USA. Dr. Hussain is the author of numerous papers in peer-reviewed journals as well as a prolific author and editor of several scientific monographs and handbooks in his research areas.
- 1. Green and Sustainable Advanced Materials: OverviewTanvir Arfin, Arshiya Tarannum and Kamini Sonawane. 11.1. History. 11.2. Biomaterials. 21.2.1. Dextran. 21.2.1.1. Chemical Structure. 21.2.1.2. Properties. 21.2.1.3. Applications. 31.2.2. Cellulose. 31.2.2.1. Chemical Structure. 41.2.2.2. Properties. 41.2.2.3. Application1.2.3. Gelatine. 41.2.3.1. Chemical Structure. 51.2.3.2. Properties. 51.2.3.3. Application. 51.2.4. Alginate. 61.2.4.1. Chemical Structure. 61.2.4.2. Properties. 71.2.4.3. Application. 71.2.5. Chitin. 71.2.5.1. Chemical Structure. 81.2.5.2. Properties. 81.2.5.3. Application. 81.2.6. Chitosan. 81.2.6.1. Chemical Structure. 91.2.6.2. Properties. 91.2.6.3. Application. 91.2.7. Pollulan. 91.2.7.1. Chemical Structure. 91.2.7.2. Properties. 101.2.7.3. Applications. 101.2.8. Curdlan. 101.2.8.1. Chemical Structure. 101.2.8.2. Properties. 111.2.8.3. Application. 111.2.9. Lignin. 111.2.9.1. Chemical Structure. 111.2.9.2. Properties. 121.2.9.3. Application. 121.2.10. Xanthan Gum. 131.2.10.1. Chemical Structure. 131.2.10.2. Properties. 141.2.10.3. Applications. 141.2.11. Hydrogels. 141.2.11.1. Chemical Structure. 141.2.11.2. Properties:. 141.2.11.3. Application. 151.2.12. Xylan. 151.2.12.1. Chemical Structure. 161.2.12.2. Properties. 161.2.12.3. Application. 161.2.13. Arabic Gum. 171.2.13.1. Chemical Structure. 171.2.13.2. Properties. 171.2.13.3. Applications. 181.3. CdS. 181.4. Carbon Nanotube. 191.5. Fe Containing Nanomaterial. 201.6. Graphene. 201.7. Graphene Oxide. 221.8. Inulin. 231.9. Pectin. 241.10. Metal Oxide. 251.10.1 TiO2. 251.10.2 ZnO. 261.10.3 CeO2. 261.11. Polymer. 271.11.1. Polystyrene. 271.11.2. PANI. 281.11.3 Starch. 281.11.4 Dendrimer. 281.12 Bentonite. 291.13 Conclusion. 29References. 302. Characterization of Green and Sustainable Advanced Materials. 35Pintu Pandit and Gayatri T.N.2.1. Introduction. 362.2. Characterization of Advanced Materials. 382.3. Physical Characterization of Advanced Materials. 392.3.1. Scanning Electron Microscopy. 412.3.2. Energy-dispersive X-ray Spectroscopy. 412.3.3. Transmission Electron Microscopy. 422.3.4. X-ray Diffraction. 432.3.5. Ultraviolet Protection. 442.3.6. Thermal Characterization (TGA, DTA, DSC, Cone Calorimetry). 442.3.6.1. Thermogravimetric Analysis. 452.3.6.2. Differential Thermal Analysis. 472.3.6.3. Differential Scanning Calorimetric Analysis. 472.3.6.4. Cone Calorimetry. 482.3.7. Characterization for Mechanical Properties of Advanced Materials. 492.4. Chemical Characterization of Advanced Materials. 502.4.1. EXAFS, XPS, and AES. 512.4.2. ICP-MS, ICP OES, and SIMS. 552.4.3. LC/GC/FTICR-MS. 572.4.4. NMR. 582.4.5. FTIR and Raman Spectroscopy. 592.5. Conclusions. 61References. 623. Green and Sustainable Advanced Biopolymeric and Biocomposite Materials. 67T.P. Mohan and K. Kanny3.1. Introduction. 673.2. Classification of Green Materials. 683.3. Biopolymers. 693.4. Natural Fillers. 703.5. Natural Fibers. 723.6. Biocomposites. 733.6.1. Thermoplastic Starch Based Composites. 733.6.2. Polylactic Acid (PLA) Based Composites. 743.6.3. Cellulose Based Composites. 743.6.4. Plant Oil Based Composites. 753.6.5. Polymer—Polymer Blends-Based Composites. 763.7. Merits and Demerits of Green Materials. 763.8. Recent Progress in Improvement of Material Properties. 783.8.1. Hybridization. 793.9. Current Applications of Biocomposites and Biopolymers. 793.9.1. Green Fibers and their Potential in Diversified Applications. 803.9.2. Textile Applications. 803.9.3. Green Fibers for Pulp. 813.9.4. Green Fiber for Biocomposites, Based on Lignocelluloses. 823.9.5. Applications of Composites. 833.9.6. Particleboards. 833.10. Futuristic Applications of Biocomposites and Biopolymers. 833.10.1. Development Prospects for Plant Fiber/Polymer Composites: 853.11. Conclusion. 85References. 864. Green and Sustainable Advanced Nanomaterials. 93Alaa K. H. Al-Khalaf and Falah H. Hussein4.1. Introduction. 934.1.1. Green Chemistry and Nanoscale Science. 944.1.2. Examples of Such Green Nanoparticles. 944.1.2.1. Beta-Carotene Molecule. 944.1.2.2. Anthocyanin Molecule. 964.1.2.3. Hydro Gel. 994.2. Applications of Natural NanoOrganic Materials. 1004.2.1. Application of Beta-Carotene. 1004.2.2. Application of Anthocyanin. 1004.2.3. Application of Hydrogel. 1014.3. Conclusion. 104References. 1055. Biogenic Approaches for SiO2 Nanostructures: Exploring the Sustainable Platform of Nanofabrication. 107M. Hariram, P. Vishnukumar and S. Vivekanandhan5.1. Introduction. 1085.2. Synthesis of SiO2 Nanostructures. 1095.2.1. Physical Processes. 1105.2.2. Chemical Processes. 1115.2.3. Template Assisted Process. 1145.3. Bio-Mediated Sustainable Processes for SiO2 Nanostructures. 1155.3.1. Bacterial Assisted Synthesis Process. 1165.3.2. Fungal Mediates Biogenic Synthesis Process. 1185.3.3. Plant Based Synthesis Process. 1205.3.4. Biomolecular Template Assisted Synthetic Process. 1235.4. Biogenic SiO2 based Doped, Functionalized and Composite Nanostructures. 1255.4.1. Biogenic Synthesis of Doped and Functionalized SiO2 Nanostructures. 1265.4.2. Biogenic SiO2 Nanocomposites. 1275.5. Applications of Bio-fabricated SiO2 Nanoparticles. 1295.5.1. Catalysis. 1305.5.2. Biomedical. 1305.5.3. Energy and Environment. 1315.6. Conclusions. 131Acknowledgements. 132References. 1326. Green and Sustainable Advanced Composite Materials. 143Yahya F. Al-Khafaji and Falah H. Hussein.6.1. Introduction. 1436.2. Applications of Polymers. 1456.3. The Problems of Synthetic Polymers. 1456.4. Why Biodegradable Polymers. 1476.5. Biodegradable Polymers. 1476.6. Copolymers. 1476.7. Examples of Biodegradable Polymers is Polyesters. 1486.7.1. Aliphatic Polyesters Polylactide PLA, PolYcaprolactone PCL and Polyvalerolactone PVL. 1486.7.2. Preparation of Polyesters. 1486.7.2.1. Polycondensation. 1496.7.2.2. Ring opening Polymerization (ROP). 1496.7.3. Mechanism of ROP. 1506.7.3.1. Cationic Ring Opening Polymerization (CROP). 1506.7.3.2. AnionicRring Opening Polymerization (AROP). 1506.7.3.3. Coordination-Insertion Polymerization. 1506.8. Conclusion. 152References. 1527. Design and Processing Aspects of Polymer and Composite Materials. 155Hafiz M. N. Iqbal, Muhammad Bilal and Tahir Rasheed7.1. Introduction. 1567.2. Design and Processing. 1587.3. Natural Polymers and Their Applied Potentialities. 1587.3.1. Alginate – Physiochemical and Structural Aspects. 1587.3.2. Carrageenan – Physiochemical and Structural Aspects. 1617.3.3. Cellulose – Physiochemical and Structural Aspects. 1627.3.4. CS – Physiochemical and Structural Aspects. 1637.3.5. Dextran – Physiochemical and Structural Aspects7.3.6. Guar Gum – Physiochemical and Structural Aspects. 1667.3.7. Xanthan – Physiochemical and Structural Aspects. 1677.4. Synthetic Polymers and Their Applied Potentialities. 1697.4.1. PAA – Physiochemical and Structural Aspects. 1697.4.2. PAM – Physiochemical and Structural Aspects. 1707.4.3. PVA – Physiochemical and Structural Aspects. 1717.4.4. PEG – Physiochemical and Structural Aspects. 1717.4.5. Poly(vinyl pyrrolidone) – Physiochemical and Structural Aspects. 1727.4.6. PLA – Physiochemical and Structural Aspects. 1727.5. Materials-based Biocomposites. 1737.6. Concluding Remarks and Future Considerations. 179Conflict of Interest. 180Acknowledgements. 180References. 1808. Seaweed-Based Binder in Wood Composites. 191Kang Chiang Liew and Nur Syafiqah Nadiah Abdul Ghani8.1. Introduction. 1918.2. Methods and Techniques. 1938.2.1. Preparation of Raw Material. 1938.2.2. Seaweed Adhesive Preparation. 1938.2.3. Blending and Mat Forming. 1938.2.4. Conditioning. 1948.2.5. Data Analysis. 1958.3. Results and Discussion. 1958.3.1. Overview. 1958.3.2. The Physical Properties of Acacia Mangium Particleboard. 1958.3.2.2. Density. 1978.3.3. Dimensional Stability of Acacia Mangium Particleboard. 1998.3.2.1. Moisture Content. 1998.3.3.2. Thickness Swelling. 2018.3.4. The Mechanical Properties of Acacia Mangium Particleboard. 2048.3.3.1. Water Absorption. 2048.3.4.2. Modulus of Rupture. 2058.3.4.3. Internal Bonding. 2078.4. Conclusion. 208References. 2099. Green and Sustainable Textile Materials Using Natural Resources. 213Pintu Pandit, Gayatri T.N. and Saptarshi Maiti9.1. Introduction. 2139.2. Sustainable Colouration of Textile Materials Using Natural Plant Waste Resources. 2169.2.1. Natural Dyeing with DSE on Silk Fabric. 2169.2.2. Natural Dyeing of Textile Materials Using Sterculia Foetida Fruit Shell Waste Extract. 2179.2.3. Natural Dyeing of Textile Materials Using Green CSE. 2209.2.4. Colouration of Textile Materials Using Resources from Temple Flower Waste. 2239.3. Sustainable Antibacterial Finishing of Textile Materials Using Natural Waste Resources. 2239.3.1. Antibacterial Activity of Delonix Regia Stem Shell Waste Extract on Silk Fabric. 2239.3.2. Antibacterial Textile Materials Using Natural Sterculia Foetida Fruit Shell Waste Extract. 2249.3.3. Antibacterial Textile Materials Using Waste Green CSE. 2259.4. Sustainable UV Protective Textile Materials Using Waste Natural Resources. 2269.4.1. UV Protective Silk Fabric Using DSE. 2269.4.2. UV Protective Textile Materials Using Sterculia Foetida FSE. 2279.4.3. UV Protective Textile Materials Using Waste Green CSE. 2289.5. Sustainable Green Flame Retardant Textile Materials Using Natural Resources. 2299.5.1. Flame Retardancy Imparted by Plant Based Waste Natural Resources. 2309.5.1.1. Flame Retardant Textile Materials Using Green CSE. 2319.5.1.2. Flame Retardant Textile Materials Using BPS. 2349.5.1.3. Flame Retardant Textile Materials Using SJ. 2369.5.1.4. Flame Retardant Textile Materials Using Starch. 2369.5.1.5. Flame Retardant Textile Materials Using PRE. 2389.5.2. Flame Retardancy Imparted by Animal Based Natural Resources. 2399.5.2.1. Flame Retardant Textile Materials Using Chicken Feather. 2399.5.2.2. Flame Retardant Textile Materials Using Casein. 2399.5.2.3. Flame Retardant Textile Materials Using Whey Protein. 2409.5.2.4. Flame Retardant Textile Materials Using Hydrophobin. 2429.5.2.5. Flame Retardant Textile Materials Using Deoxyribonucleic Acid. 2429.5.2.6. Flame Retardant Textile Materials Using Chitosan. 2439.6. Sustainable Textile Materials Using Clay as Natural Resources. 2439.6.1. Different Types of Clay and its Applicationin Textile Materials. 2439.6.1.1. Application of Clay in Nanocomposites. 2459.6.1.2. Application of Clay in UV Protection. 2469.6.1.3. Application of Clay in Effluent Treatment. 2469.6.1.4. Application of Clay in Superabsorbency. 2479.6.1.5. Application of Clay in Discolouration of Denim. 2489.6.1.6. Application of Clay in Antimicrobial Finish. 2489.6.1.7. Application of Clay in Flame Retardancy. 2499.6.1.8. Application of Clay in Dyeing and Printing. 2509.7. Sustainable Application of Aroma Finishing in Textile Materials Using Natural Resources. 2509.7.1. Different Natural Sources of Aroma and Technology for Microencapsulation. 2509.7.2. Preparation of Recipe and Method of Application for Aroma Finishing. 2519.7.3. Fragrance Release Property of Aroma Finishing. 2519.7.4. Applications of Aroma Finishing in Textile Materials. 2529.8. Sustainable Mosquito Repellent Textile Materials Using Natural Resources. 2539.8.1. Different Types of Repellent Insecticides. 2539.8.2. Natural Resources of Mosquito Repellents. 2539.8.3. Mosquito Repellency Evaluation. 2539.8.4. Method of Application of Mosquito Repellency. 2559.8.5. Applications of Mosquito Repellency in Textile Materials. 2569.9. Conclusion. 256References. 25710. Green Engineered Functional Textile Materials. 263Pravin Chavan, Shahid-ul-Islam, Akbar Ali, Shakeel Ahmed and Javed Sheikh10.1. Introduction. 26310.1.1. Green Chemicals. 26510.1.2. Functional Finishing of Textiles: The Expectations. 26510.2. Different Finishes Applied onto Textiles: Present Techniques vs. Green Methods. 26610.2.1. Mosquito Repellent Finish. 26710.2.2. Green Approach. 26910.3. Methods of Application of Microcapsules on Textiles. 27310.4. Release Mechanism of Core Material from Microcapsules. 27310.5. Chemistry of EO. 27310.6. Evaluation of Mosquito Repellency. 27610.6.1. American Society for Testing and Materials (ASTM) Standard E951–83. 27610.6.2. Screened Cage Method. 27610.6.3. WHO Cone and Field Test Method. 27610.6.4. Tunnel Test. 27710.6.5. USDA Laboratory Method. 27910.7. Aroma Finish. 27910.7.1. General Method of Application. 28010.7.2. Green Methods: EO for Aroma Finish. 28110.7.3. Evaluation of Aroma Finishes. 28210.8. Conclusion. 282References. 28311. Advances in Bio-Nanohybrid Materials. 289Houda Saad, Pedro Luis de Hoyos, Ezzeddine Srasra, Fatima Charrier-El Bouhtoury11.1. Introduction. 28911.2. Inorganic/Organic Hybrids. 29011.2.1 Definition, Classification and Synthetic Routes. 29111.2.2 Bio-nanohybrid Materials. 29611.3. Bio-nanohybrid Materials Based on Clay and Polyphenols. 29711.3.1 Clay Minerals and Organoclay. 29711.3.1.1. Clay Minerals. 29711.3.1.2. Surface Modification of Clay Minerals: Organoclays. 30611.3.2. Polyphenols as Natural Substances. 30911.3.3. Clay/Polyphenols Hybrids. 31111.3.3.1. Techniques Used for Clay-Based Hybrids Characterization. 31111.4. Conclusions and Perspectives. 323References. 32412. Green and Sustainable Selenium Nanoparticles and Their Biotechnological Applications. 333MeryamSardar and HammadAlam12.1. Introduction. 33412.2. Synthesis of SeNPs. 33512.2.1. Physical Methods of Synthesis of SeNPs. 33612.2.2. Chemical Methods for Synthesis of SeNPs. 33612.2.3. Microbial Synthesis of SeNPs. 33712.2.4. Plant Based Synthesis of SeNPs. 33712.3. Biotechnological Applications of SeNPs. 34112.3.1 Anticancerous Activity. 34212.3.2 Antioxidant Activity. 34312.3.3 Antidiabetic Effect. 34512.3.4 Wound Healing. 34512.3.5 Antibacterial Activity. 34512.3.6 Antilarvicidal Activity. 34712.3.7 Biosensors. 34712.4. Conclusion. 347Acknowledgments. 348References. 348Index. 000