Beyond-CMOS
State of the Art and Trends
Inbunden, Engelska, 2023
Av Alessandro Cresti, Italy) Cresti, Alessandro (University of Pisa
2 159 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Recent advances in physics, material sciences and technology have allowed the rise of new paradigms with bright prospects for digital electronics, going beyond the reach of Moore's law, which details the scaling limit of electronic devices in terms of size and power. This book presents original and innovative topics in the field of beyond CMOS electronics, ranging from steep slope devices and molecular electronics to spintronics, valleytronics, superconductivity and optical chips.Written by globally recognized leading research experts, each chapter of this book will provide an introductory overview of their topic and illustrate the state of the art and future challenges. Aimed not only at students and those new to this field, but also at well-experienced researchers, Beyond-CMOS provides extremely clear and exciting perspectives about the technology of tomorrow, and is thus an effective tool for understanding and developing new ideas, materials and architectures.
Produktinformation
- Utgivningsdatum2023-07-31
- Mått161 x 240 x 29 mm
- Vikt903 g
- FormatInbunden
- SpråkEngelska
- SerieISTE Consignment
- Antal sidor448
- FörlagISTE Ltd
- ISBN9781789451276
Tillhör följande kategorier
Alessandro Cresti received his doctorate in physics at the University of Pisa, Italy, in 2006. Since 2011 he has been a researcher at CNRS, France. He has developed full-quantum tools for simulating transport in nanostructures, with particular focus on both basic and applied aspects of 2D materials.
- Preface xiAlessandro CRESTIChapter 1 Tunnel Field-Effect Transistors Based on III–V Semiconductors 1Marco PALA1.1 Introduction 11.2 Experiments 31.3 Simulation of III–V-based TFETs 51.3.1 The k.p model in the NEGF formalism 61.4 SS degradation mechanisms 101.4.1 Electrostatic integrity 101.4.2 Trap-assisted tunneling 131.4.3 Surface roughness 161.5 Strategies to improve the on-state current 181.5.1 Strain 181.5.2 Broken-gap hetero-structures 221.5.3 Molar fraction grading of the source material 251.6 Conclusion 271.7 References 28Chapter 2 Field-Effect Transistors Based on 2D Materials: A Modeling Perspective 33Mathieu LUISIER, Cedric KLINKERT, Sara FIORE, Jonathan BACKMAN, Youseung LEE, Christian STIEGER and Áron SZABÓ2.1 Introduction 332.1.1 Future of Moore’s law 332.1.2 The potential of 2D materials 382.2 Modeling approach 422.2.1 Requirements and state of the art 422.2.2 Maximally localized Wannier functions (MLWFs) 452.2.3 Towards ab initio quantum transport simulations 462.3 2D device performance analysis 492.3.1 MoS2 and other TMDs 492.3.2 Novel 2D materials 522.4 Challenges and opportunities 612.4.1 Electrical contacts between metals and 2D monolayers 612.4.2 2D mobility limiting factors 622.4.3 2D oxides 642.4.4 Advanced logic concepts 662.5 Conclusion and outlook 672.6 Acknowledgments 682.7 References 68Chapter 3 Negative Capacitance Field-Effect Transistors 79Wei CAO and Kaustav BANERJEE3.1 Introduction 793.2 The rise of NC-FETs 803.3 Understanding NC-FETs from scratch 843.3.1 Electrostatics in a generic NC-FET 843.3.2 Formulating switching slope of a generic NC-FET 853.4 Fundamental challenges of NC-FET 883.4.1 NC does not help good FETs 883.4.2 Quantum capacitance may “kill” NC-FETs 913.5 Design and optimization of NC-FET 923.5.1 Designing NC-FET in the quantum capacitance limit 923.5.2 The role of NC nonlinearity 943.5.3 IMG: borrow parasitic charge for polarization in NC 963.5.4 A practical role of NC for FETs: voltage-loss saver 983.6 Appendix: A rule for polarization dynamics-based interpretation of the subthermionic SS 1023.7 References 103Chapter 4 Z2 Field-Effect Transistors 109Joris LACORD4.1 Introduction 1094.2 Z2FET steady-state operation 1124.2.1 Z2FET sharp switch evidence 1134.2.2 Z2FET “S-shape” characteristic 1154.2.3 Z2FET detailed description 1164.3 Z2FET steady-state analytical and compact model 1254.3.1 Z2FET steady-state analytical drain current model 1254.3.2 Z2FET analytical evaluation of switching voltage 1284.3.3 Z2FET compact model 1314.4 Z2FET experimental evidence 1324.4.1 Z2FET fabrication 1324.4.3 Z2FET switching characteristic under gate sweep 1334.4.4 Z2FET switching characteristic under drain sweep 1344.5 Z2FET as 1T-DRAM 1354.5.1 Z2FET 1T-DRAM operation description 1354.5.2 Z2FET 1T-DRAM operation experimental evidence 1364.6 Z2FET structure optimization 1394.6.1 Z2fet Dgp 1404.6.2 Z3fet 1424.7 Z2FET advanced applications 1434.7.1 Z2FET as ESD 1434.7.2 Z2FET as logic switch 1444.7.3 Z2FET as photodetector 1464.8 Conclusion 1464.9 References 147Chapter 5 Two-Dimensional Spintronics 151Matthieu JAMET, Diogo C. VAZ, Juan F. SIERRA, Josef SVĚTLÍK, Sergio O. VALENZUELA, Bruno DLUBAK, Pierre SENEOR, Frédéric BONELL and Thomas GUILLET5.1 Introduction 1515.2 Spintronics in 2D Rashba gases at oxide surfaces–interfaces 1525.2.1 Emergent 2D conductivity at oxide interfaces 1535.2.2 Rashba spin–orbit interactions 1555.2.3 Spin-to-charge current conversion in oxide 2DEGs 1565.2.4 Device applications and prospects 1595.3 Spintronics in lateral spin devices in 2D materials 1625.3.1 Introduction 1625.3.2 Spin injection and detection 1645.3.3 Spin precession 1655.3.4 Mechanisms of spin relaxation 1665.3.5 Spin transport in van der Waals heterostructures 1675.4 2D materials in magnetic tunnel junctions 1705.4.1 Introduction 1705.4.2 First steps towards 2D material integration in magnetic tunnel junctions 1725.4.3 Exfoliated and transferred devices: early results 1745.4.4 Exfoliated and transferred devices: improvement through in situ definition 1765.4.5 Direct CVD growth: the rise of large scale and high quality 1775.4.6. Experimental evidences of 2D-based spin filtering in hybrid 2D-MTJs 1785.4.7 Conclusion 1815.5 Topological insulators in spintronics 1825.5.1 Introduction 1825.5.2 Spin-momentum locking and spin–charge interconversion 1835.5.3 Materials, interfaces and fabrication methods 1865.5.4 Spin–charge interconversion measurements 1885.5.5 Conclusion and outlook 1915.6 References 192Chapter 6 Valleytronics in 2D Materials 209Steven A. VITALE6.1 Introduction 2096.2 Exciton and valley physics 2106.2.1 Introduction to valleys and excitons 2116.2.2 Valley physics 2146.2.3 Spin orbit coupling and exotic excitons 2206.3 Valley lifetime, transport and operations 2236.3.1 Valley lifetime 2236.3.2 Valley transport 2286.3.3 Valley operations 2296.4 Valleytronic devices and materials 2336.5 Valleytronic computing 2386.5.1 Classical computing – power and performance 2386.5.2 Classical computing – architecture 2416.5.3 Quantum computing 2426.5.4 Outlook 2446.6 References 244Chapter 7 Molecular Electronics: Electron, Spin and Thermal Transport through Molecules 251Dominique VUILLAUME7.1 Introduction 2517.2 How to make a molecular junction 2527.3 Electron transport in molecular devices: back to basics 2547.4 Electron transport: DC and low frequency 2567.5 Electron transport at high frequencies 2637.6 Spin-dependent electron transport in molecular junctions 2647.7 Molecular electronic plasmonics 2687.8 Quantum interference and thermal transport 2707.9 Noise in molecular junctions 2757.10 Conclusion and further reading 2797.11 References 280Chapter 8 Superconducting Quantum Electronics 295Sasan RAZMKHAH and Pascal FEBVRE8.1 Introduction 2958.1.1 A little bit of history 2958.1.2 The Josephson junction 2988.1.3 Superconducting quantum interference devices (SQUIDs) 3038.1.4 Emergence of superconductor electronics 3088.2 Passive superconducting electronics 3098.2.1 Surface impedance of superconductors 3098.2.2 Superconductor waveguides and transmission lines 3118.2.3 Superconducting antennas 3158.2.4 Superconducting filters 3158.2.5 Microwave switches 3168.3 Superconducting detectors 3178.3.1 Transition edge sensors (TES) 3188.3.2 Superconductor nanowire single-photon detectors (SNSPDs) 3198.3.3 Kinetic inductance detectors (KIDs) 3198.4 Superconducting digital electronics 3218.4.1 Single flux quantum (SFQ) logic 3228.4.2 Adiabatic quantum flux parametron (AQFP) logic 3378.4.3 Towards superconducting computing 3398.4.4 In-memory and quantum neuromorphic computing 3428.4.5 Computer-aided design (CAD) tools 3458.5 Superconducting quantum computing 3468.5.1 Epistemological approach 3468.5.2 Superconductor quantum bits (qubits) 3598.5.3 Source of decoherence in qubits 3638.5.4 Interface system for Josephson junction qubits 3648.5.5 The qubit cavity 3688.6 Cryogenic cooling 3728.7 References 373Chapter 9 All-Optical Chips 393Frank BRÜCKERHOFF-PLÜCKELMANN, Johannes FELDMANN and Wolfram PERNICE9.1 Introduction 3939.2 Nanophotonic circuits 3949.2.1 Dielectric waveguides 3959.2.2 Basic photonic devices 3969.3 Phase change photonics 3989.3.1 Switching dynamics of phase change materials 3989.3.2 Waveguide-coupled phase change materials 3999.4 Photonic tensor core 4019.4.1 Optical multiply and accumulate operations 4029.4.2 Design of the photonic tensor core 4049.4.3 Parallel computing by wavelength division multiplexing 4059.4.4 Photonic tensor core prototype 4079.5 Optical artificial neural network 4099.5.1 Artificial neural networks 4099.5.2 Nonlinear activation unit 4119.5.3 Optical neuron prototype 4139.6 Challenges and outlook 4149.7 References 416List of Authors 421Index 425