Plant Biomass Derived Materials, 2 Volumes
Sources, Extractions, and Applications
Inbunden, Engelska, 2024
Av Seiko Jose, Sabu Thomas, Lata Samant, Sneha Sabu Mathew, India) Jose, Seiko (ICAR-Central Sheep & Wool Research Inst., India) Thomas, Sabu (Mahatma Gandhi University, India) Samant, Lata (Govind Ballabh Pant University, India) Mathew, Sneha Sabu (Mahatma Gandhi University
2 549 kr
Produktinformation
- Utgivningsdatum2024-03-13
- Mått170 x 244 x 38 mm
- Vikt1 332 g
- FormatInbunden
- SpråkEngelska
- Antal sidor624
- FörlagWiley-VCH Verlag GmbH
- ISBN9783527350766
Tillhör följande kategorier
Seiko Jose is a scientist at Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, India. Sabu Thomas is the Director of Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala, India. Lata Samant is a research scholar at G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India. Sneha Sabu Mathew is a research scholar at Mahatma Gandhi University, Kottayam, Kerala, India.
- Preface xix1 Biomass – An Environmental Concern 1Deepak S. Khobragade1.1 Introduction 11.2 Biomass as an Energy Source 41.3 The Environmental Concern of Biomass 61.4 Air Pollution 71.4.1 Gaseous Emissions 71.4.2 Dust 71.4.3 Biomass Ash (Bottom Ash) 71.4.4 Fly Ash 81.4.5 Carbon Monoxide Poisoning 81.5 Water Use and Water Pollution 81.6 Impact on Soil 91.7 Indoor Pollution 111.8 Deforestation and Land Degradation 111.9 Health Hazards 111.10 Non-respiratory Illness 111.10.1 In Children 111.10.1.1 Lower Birth Weight 111.10.1.2 Nutritional Deficiency 121.10.2 Respiratory Illness in Adults 121.10.2.1 Interstitial Lung Disease 121.10.2.2 Chronic Obstructive Pulmonary Disease (COPD) 121.10.2.3 Tuberculosis 121.10.2.4 Lung Cancer 121.10.3 Non-respiratory Illness in Adults 131.10.3.1 Cardiovascular Disease 131.10.3.2 Cataracts 131.11 Safe Disposal of Biomass 131.12 The Bioeconomy of the Biomass Utilization 151.13 Biowaste-Derived Functional Materials 151.14 Conclusion 16References 172 Chemistry of Biomass 23Wagner M. Cavalini, Breno M. Jóia, Diego E. R. Gonzaga, Rogério Marchiosi, Osvaldo Ferrarese-Filho, and dos Santos, Wanderley D.2.1 Introduction 232.2 Cellulose 252.3 Hemicellulose 262.3.1 Xylans 272.3.2 Mannans 272.3.3 Arabinogalactans 282.4 Pectin 282.4.1 Homogalacturonan 292.4.1.1 Rhamnogalacturonan I 292.4.1.2 Rhamnogalacturonan II 292.5 Lignin 302.5.1 Lignin Valorization 312.6 Reserve Compounds 312.6.1 Starch 312.6.2 Sucrose 322.6.3 Lipids 332.6.3.1 Fatty Acids 332.6.3.2 Triacylglycerols 342.7 Natural Compounds (Secondary Metabolites) 342.7.1 Terpenoids 352.7.2 Phenylpropanoids 352.7.3 Alkaloids 362.8 Conclusion 36References 373 Lignin from Biomass − Sources, Extraction, and Application 43Irwan Kurnia, Surachai Karnjanakom, and Guoqing Guan3.1 Sources 433.2 Extraction 453.2.1 Alkaline Process 473.2.1.1 Sulfur Processes 473.2.1.2 Sulfur-Free Processes 483.2.2 Acidic Process 483.2.2.1 Concentrated Acid Process (Klason Process) 493.2.2.2 Dilute Acid Process 493.2.3 Solvent-Assisted Extraction Processes 493.2.3.1 Organosolv Process 493.2.3.2 Aldehyde-Assisted Process 493.2.3.3 GVL-Assisted Process 503.2.3.4 Ionic Liquid Process 503.2.3.5 Deep Eutectic Solvents Process 513.2.4 Physical-Assisted Extraction Processes 513.2.4.1 Milled-Wood Process 513.2.4.2 Microwave-Assisted Process 513.2.5 Enzymatic Process 523.3 Application 533.3.1 Lignin-Derived Nanomaterials 533.3.1.1 Biomedical Materials 543.3.1.2 Energy Storage Materials 553.4 Summary and Outlook 57Acknowledgments 57References 584 Starch from Biomass – Sources, Extraction, and Application 63Abdelaziz Amir, Trache Djalal, Sahnoun Nassima, and Tarchoune A. Fouzi4.1 Introduction 634.1.1 Starch Source 634.1.2 Root and Tuber Starch Sources 634.1.2.1 Potato 634.1.2.2 Sweet Potato 654.1.2.3 Cassava 674.1.2.4 Yam 694.1.3 Cereal Starch Sources 704.1.3.1 Wheat 704.1.3.2 Corn 724.1.3.3 Rice 734.1.3.4 Oats 744.1.3.5 Barley 754.1.4 Nonconventional Starch Sources 764.1.4.1 Legumes 764.1.4.2 Fruits 774.2 Starch Extraction 804.2.1 Milling Process and its Effect on Starch Structure 804.2.1.1 Dry Milling 804.2.1.2 Wet Milling 814.2.1.3 Effect of the Milling Process on Starch Structure 814.2.2 Examples of Starch Extraction from Different Sources 824.2.2.1 Extraction of Starch from Tubers 824.2.2.2 Extraction of Starch from Cereals and Pulses 834.2.3 Nonconventionnel Extraction Techniques 854.2.3.1 Ultrasound-assisted Milling 854.2.3.2 Microwave-Assisted Starch Extraction 854.2.3.3 Air-Classification Assisted Milling 864.2.3.4 Electrostatic Separation 864.2.3.5 Gluten Washing 874.3 Starch Applications 874.3.1 Medical Applications 874.3.1.1 Drug Delivery Systems 874.3.1.2 Surgical Sutures 884.3.1.3 Bone Fixation and Regeneration 884.3.1.4 Tissue Adhesion 894.3.2 Water Treatment 894.3.3 Agricultural Applications 904.3.4 Packaging Applications 934.3.5 Food Applications 944.4 Conclusions 95References 965 Recent Trends of Cashew Nutshell Liquid: Extraction, Chemistry, and Applications 117Sixberth Mlowe and James Mgaya5.1 Introduction 1175.2 Global Production of Cashew in the World 1185.3 Extraction of CNSL 1185.3.1 Thermal Extraction 1185.3.2 Mechanical Extraction 1195.3.3 Solvent Extraction 1205.4 Isolation and the Chemistry of Major Components of CNSL 1205.4.1 Isolation of the Components of Natural CNSL 1215.4.2 Isolation of the Components of Technical CNSL 1225.5 Recent Developments in the Chemical Transformation and Uses of Cashew Nutshell Liquid 1235.5.1 Pharmaceutical Drugs from Cardanol 1235.5.2 Anthraquinone-Based Dyes from Anacardic Acid 1255.5.3 CNSL-Based UV Absorbers 1265.5.4 CNSL in Preparation of Bioactive Nanocarriers 1275.5.5 CNSL as a Green Catalyst 1275.5.6 CNSL-Derived Bifunctional Chemicals 1285.5.7 CNSL-Based Flame Retardants 1295.5.8 Use of Cashew Nutshell Liquid in the Synthesis of Nanomaterials 1305.5.9 Use of Cashew Nutshell for Decontamination of Polluted Environment 1315.5.10 Use of CNSL for Preparation of Resins, Adhesives, and Coatings 1335.6 Conclusions 134Acknowledgment 134References 1346 Plant Biomass Seed and Root Mucilage: Extraction and Properties 141Mohsin A. Raza, Paul D. Hallett, and Waheed Afzal6.1 Introduction 1416.2 Extraction and Preparation Methods 1446.2.1 Mucilage Extraction and Preparation 1446.2.2 Other Mucilage Extraction Methods 1446.2.3 Model Compounds Preparation 1456.2.4 Density and Viscosity Measurements 1456.3 Results and Discussion 1466.3.1 Density 1466.3.2 Viscosity 1496.3.3 Model Compounds 1526.4 Conclusion 156References 1577 Plant-Based Colorants: Isolation and Application 159Vandana Bhandari, Pratikhya Badanayak, and Seiko Jose7.1 Introduction 1597.2 Classification of Natural Colorants 1607.2.1 Classification Based on the Sources of Colorants 1607.2.1.1 Plant-Based Natural Colorants 1607.2.1.2 Colorant Obtained from Animal Sources 1627.2.1.3 Mineral-Based Natural Colorants 1627.2.1.4 Microbial and Fungal Origin 1637.2.2 Classification on the Basis of Chemical Constituents Present 1637.2.2.1 Indigoid Dyes 1637.2.2.2 Anthraquinone Dyes 1647.2.2.3 Naphthoquinone Dyes 1647.2.2.4 Flavonoid Dyes 1657.2.2.5 Carotenoid Dyes 1657.2.2.6 Tannin-Based Dyes 1657.2.3 Classification on the Basis of Colors Obtained 1657.2.3.1 Natural Yellow Dyes 1657.2.3.2 Natural Red Dyes 1657.2.3.3 Natural Blue Dyes 1667.2.3.4 Natural Black Dyes 1667.2.3.5 Natural Brown Dyes 1667.2.4 Classification on the Basis of Methods of Applications 1667.3 Extraction Methods of Naturally Occurring Colorants 1677.3.1 Conventional/Traditional Methods 1677.3.1.1 Aqueous Extraction 1677.3.1.2 Nonaqueous Extraction 1687.3.2 New Innovative/Modern Methods 1697.3.2.1 Radiation-Based Extraction (Gamma, Plasma, Microwave, Ultraviolet, and Ultrasonic Radiation) 1697.3.2.2 Gamma Radiation 1707.3.2.3 Ultraviolet Radiation 1707.3.2.4 Ultrasonic Radiation 1707.3.2.5 Supercritical Extraction 1707.3.2.6 Enzymatic Method 1717.4 Mordanting 1717.4.1 Metal Salts Mordants 1727.4.2 Oil Mordants 1727.4.3 Tannins 1727.5 Mordanting Methods 1737.6 Functional Properties of Natural Colorants 1737.6.1 Antimicrobial Property 1737.6.2 Deodorant Properties of Natural Dyes 1757.6.3 UV-Protection Property of Natural Dyes 1757.6.4 Insect-Repellent Properties of Natural Dyes 1767.7 Fastness Properties of Natural Dyes 1767.8 Advantages and Disadvantages of Natural Dyes 1777.8.1 Advantages 1777.8.2 Disadvantages 1787.9 Conclusion 178References 1798 Revival of Sustainable Fungal-Based Natural Pigments 189Shahid Adeel, Amna Naseer, Bisma, Fazal-ur-Rehman, Noman Habib, and Atya Hassan8.1 Introduction 1898.2 Classification of Natural Dyes Based on Sources 1908.3 Fungal-Based Dyes and Pigments 1908.4 Classification of Fungal Pigments 1908.4.1 Species of the Trichocomaceae Family Producing Pigments 1918.4.1.1 Aspergillus 1918.4.1.2 Penicillium 1938.4.1.3 Talaromyces Species 1948.4.2 Species of the Monascaceae Family Producing Pigments 1968.4.2.1 Monascus purpureus 1968.4.3 Species of the Nectriaceae Family Producing Pigments 1988.4.3.1 Fusarium oxysporum 1988.4.3.2 Fusarium graminearum 1998.4.3.3 Fusarium fujikuroi 2018.4.4 Species of the Hypocreaceae Family Producing Pigments 2028.4.4.1 Trichoderma harzianum 2028.4.4.2 Trichoderma spirale 2048.4.5 Species of the Pleosporaceae Family Producing Pigments 2058.4.5.1 Pleosporaceae spp. (Alternaria, Curvularia, and Drechslera) 2058.5 Conclusion 207References 2079 Modern Approach Toward Algal-Based Natural Pigments for Textiles 213Mahwish Salman, Shahid Adeel, Mehwish Naseer, Muhammad Zulqurnain Haider, and Fozia Anjum9.1 Introduction 2139.1.1 Bio-Pigments 2169.2 Diversity of Bio-Pigments Present in Algae 2169.2.1 Chlorophyll 2179.2.2 Carotenoids 2189.2.3 Phycobilisomes 2189.2.4 Phycobilins 2199.2.5 Phycocyanin 2199.2.6 Phycoerythrin 2209.3 Extraction Methods of Bio-Pigments 2209.4 Conventional Extraction Methods 2209.4.1 Classic Extraction 2209.4.1.1 Solvent-Based Extraction 2209.4.1.2 Thermal Treatment 2219.4.1.3 Freeze-Thaw Method 2219.4.1.4 Enzymatic Extraction 2219.4.2 Modern Extraction Methods 2229.4.2.1 Pressurized Systems 2229.4.2.2 Wave-Energy-Based Cell Disruption 2229.4.2.3 Cell Milking 2249.4.2.4 Electroextraction 2249.4.2.5 Supercritical Fluid Extraction 2259.4.3 Novel Extraction Methodologies 2259.4.3.1 Laser 2269.4.3.2 Hydrodynamic Cavitation 2269.4.3.3 High Voltage Electrical Discharge (HVED) 2269.4.3.4 Ohmic Heating (OH) 2269.5 Algal-Based Natural Dyes 2279.6 Bio-Pigments in the Textile Industry 2299.7 Utilization of Algal-Based Natural Dyes in Different Industries 2309.8 Future Prospective of Algal-Based Bio-Pigments 2319.9 Conclusion 232References 23310 Biorefinery from Plant Biomass: A Case Study on Sugarcane Straw 243Fahriya P. Sari, Nissa N. Solihat, Nur I. W. Azelee, and Widya Fatriasari10.1 Introduction 24310.2 Biorefinery Concept and Current Trend 24510.3 Biorefinery Concepts for Sugarcane Straw Valorization 25010.3.1 Cellulose-Derived Bioproducts (Isolation, Characterization, Derivative Products) 25010.3.1.1 Bioethanol 25010.3.1.2 Cellulose Nanofiber (CNF) and Cellulose Nanocrystal (CNC) 25310.3.1.3 Biomethane 25310.3.1.4 Biohydrogen 25410.3.2 Hemicellulose-Derived Bioproducts (Isolation, Characterization, Derivative Products) 25410.3.2.1 Xylose and Xylooligosaccharides Derived from Hemicellulosic Sugarcane Straw 25810.3.2.2 Xylitol Derived from Hemicellulosic Sugarcane Straw 25810.3.2.3 Furfural Derived from Hemicellulosic Sugarcane Straw 25910.3.2.4 Alcohols and Biogas Derived from Hemicellulosic Sugarcane Straw 25910.3.3 Lignin-Derived Bioproducts (Isolation, Characterization, Derivative Products) 25910.3.4 Other Components (Extractives and Ash) Derived Bioproducts 26010.4 Challenges and Future Perspectives 26210.5 Conclusion 263Acknowledgment 263References 26311 Forest and Agricultural Biomass 271Mohd H. Mohamad Amini11.1 Introduction 27111.2 Forest Sources 27211.2.1 Virgin and Natural Forest 27211.2.1.1 Hardwood 27311.2.1.2 Softwood 27311.3 Plantation Forest 27411.3.1 Timber Species 27511.3.1.1 Acacia mangium 27511.3.1.2 Rubber Tree 27611.3.1.3 Pinus radiata 27611.3.1.4 Tectona grandis 27611.3.2 Non-timber Species 27611.3.2.1 Bamboo 27711.3.2.2 Jute and Kenaf 27811.4 Agricultural Biomass 27911.4.1 Corn/Maize 27911.4.2 Sugarcane 28011.4.3 Oil Palm 28011.4.4 Wheat 28111.4.5 Cassava 28211.4.6 Coconut 28311.4.7 Rice 28411.4.8 Others 28411.5 Biomass Extraction and Application 28511.6 Conclusion and Prospect 286References 28612 Manufacture of Monomers and Precursors from Plant Biomass 291Catarina P. Gomes, Amir Bzainia, Ayssata Almeida, Cláudia Martins, Rolando C.S. Dias, and Mário Rui P.F.N. Costa12.1 Introduction 29112.2 Industrially Relevant Monomers and Precursors from Plant Biomass 29512.2.1 Saccharides 29512.2.2 Ethanol 29812.2.3 Lactic Acid 30012.2.4 Itaconic Acid 30212.2.5 Succinic Acid 30212.2.6 Sorbitol and Xylitol 30312.2.7 5-Hydroxymethylfurfural 30312.2.8 Hydroxy Acids for Poly(Hydroxyalkanoates) 30412.2.9 Further Chemicals with Practical Relevance 30612.3 Other Monomers and Precursors Through the Biotechnological Pathway 31212.4 Other Monomers and Precursors Through the Catalytic Pathway 31312.5 Conclusion 314Abbreviations 314Acknowledgments 315References 31613 Chemical Routes for the Transformation of Bio-monomers into Polymers 329Catarina P. Gomes, Amir Bzainia, Ayssata Almeida, Cláudia Martins, Rolando C.S. Dias, and Mário Rui P.F.N. Costa13.1 Introduction 32913.2 Main Chemical Routes for the Transformation of Bio-monomers into Polymers 32913.2.1 Ring-Opening Polymerization 33013.2.2 Condensation Polymerization 33313.2.3 Free Radical Polymerization 33613.3 Exploitation of Olive Tree and Olive Oil Residues as Feedstock for Biopolymers Production 33913.3.1 Second Generation Bioethanol and Platform Chemicals for the Polymer Industries from Lignocellulosic Fractions 34113.3.2 Polyhydroxyalkanoates 34213.3.3 Exploitation of Residual Oils from Olive Mills and Olive Pomace to Get Polymerizable Monomers 34313.3.4 Polyphenols in Olive Tree Residues for Advanced Functional Polymers 34313.4 Exploitation of Winemaking Residues for Biopolymers Production 34513.4.1 Bioethanol 34513.4.2 Lactic Acid, Xylitol and Furfural 34613.4.3 Succinic Acid 34613.4.4 Poly(hydroxyalkanoates) 34713.4.5 Bio-oils from Winemaking Residues for Generation of Polymerizable Monomers 34713.4.6 Polyphenols in Winery Residues for Advanced Functional Polymers 34813.5 Conclusion 348Abbreviations 349Acknowledgments 350References 35014 Manufacture of Polymer Composites from Plant Fibers 363Md. Reazuddin Repon, Tarekul Islam, Tarikul Islam, and Md. Abdul Alim14.1 Introduction 36314.2 Biocomposites 36514.2.1 Plant-based Natural Fibers 36614.2.2 Polymer Matrix 36714.3 Fiber Treatment and Modification 37114.4 Fabrication of Composites 37314.5 Mechanical Properties of Micro and Nanopolymer Composites 37614.6 Biodegradability of Micro and Nano-Polymer Compounds 37714.7 Potential Application Areas of Micro and Nanopolymer Composites 37814.8 Conclusion 381References 38215 Lignin-Based Composites and Nanocomposites 389Rubén Teijido, Julia Sanchez-Bodón, Antonio Veloso-Fernández, Leyre Pérez-Álvarez, Ana C. Lopes, Isabel Moreno-Benítez, José L. Vilas-Vilela, and Leire Ruiz-Rubio15.1 Lignin Introduction 38915.2 Synthesis of Lignin-Based Nanoparticles 39315.2.1 Acid-Catalyzed Precipitation 39315.2.2 Flash Precipitation and Nanoprecipitation 39415.2.3 Solvent Exchange 39515.2.4 Water-in-Oil (W/O) Microemulsion Methods 39515.2.5 Homogenization and Ultrasonication 39515.3 Lignin Properties and Applications 39615.3.1 Lignin Nanoparticles–Matrix Interactions 39715.3.2 High-Temperature Requiring Applications 39815.3.3 Biomedical Applications 40015.3.4 Environmental Applications 40215.3.5 Energy Storage, Catalysis, and Electrochemistry Applications 40515.3.5.1 Catalysis and Environmental Remediation 40515.3.5.2 Energy Storage Applications: Electrodes and Supercapacitors 40615.3.6 Civil Engineering Applications (Construction, Protective Coatings, and Mechanical Reinforcing Applications) 40615.4 Conclusion and Future Work 407Acknowledgments 412References 41216 Bio Plastics from Biomass 421Alcides L. Leao, Ivana Cesarino, Milena C. de Souza, Ivan Moroz, and Mohammad Jawaid16.1 Introduction 42116.2 Types and Applications of Bioplastics 42216.3 Global Market 42716.4 Bioplastics Processing and Applications 42916.4.1 Polyamides 43016.4.2 Pp 43116.4.3 PBAT and PBS 43216.4.4 Cellulose 43216.5 Conclusion 434Acknowledgments 434References 43417 Plant-based Materials for Energy Application 441Patrick U. Okoye, Diego R. Lobato-Peralta, José L. Alemán-Ramirez, Estefania Duque-Brito, Dulce M. Arias, Jude A. Okolie, and Pathiyamattom J. Sebastian17.1 Introduction 44117.2 Plant-based Lignocellulosic Biomass 44217.2.1 Composition and Extraction of Lignocellulosic Components 44217.2.2 Conversion of Plant-based Biomass Into Activated Carbon 44317.2.3 Types of Activation 44417.3 Reactor Configuration 44517.4 Plant-based Carbon Materials for Energy Storage Purposes 44717.4.1 Supercapacitors 44817.4.2 Hydrogen Storage 44917.4.3 Microbial Fuel Cells 45017.4.4 Plant-based Catalysts for Biodiesel Synthesis 45117.4.4.1 Green Heterogeneous Catalysts 45217.4.4.2 Development and Activation of Green Heterogeneous Catalysts 45217.5 Challenges 45617.6 Conclusions and Recommendations 456References 45718 Plant Biomass for Water Purification Applications 465Humayra A. Himu, Tanvir M. Dip, Ayesha S. Emu, A T M F. Ahmed, and Md. Syduzzaman18.1 Introduction 46518.2 Sources of Plant Biomass Used for Water Purification 46918.2.1 Agricultural Peel-Based Biomass 47118.2.2 Leaf-Based Biomass 47118.2.3 Stems and Roots-Based Biomass 47218.2.4 Powder and Dust-Based Biomass 47218.2.5 Floating Plants, Beds, and Wetlands 47318.3 Modification of Plant Biomass 47318.3.1 Physical Modification 47318.3.2 Chemical Modification 47418.3.2.1 Chemically Modified Plant Biomass for Water Purification 47418.3.2.2 Three-Dimensional Porous Cake-Like Biosorbent 47418.3.3 Thermochemical Modification 47718.3.3.1 Plant Biomass-Derived Biochar 47718.3.3.2 Plant Biomass-Derived AC 47718.4 Plant Biomass-Based Water Purification Processes/Techniques 47918.4.1 Adsorbent-Based Process 48018.4.2 Solar Steam Generation (SSG) Device for Desalination and Filtration 48118.4.3 Biosorption 48218.4.4 Membrane Filtration 48518.5 Purification Mechanism 48618.5.1 For Dye Removal 48618.5.2 For Heavy Metal Removal 48718.5.3 For Other Compounds Removal 48918.6 Sector-Based Water Purification 48918.6.1 Drinking Water 49118.6.2 Industrial Wastewater 49318.6.3 Domestic Wastewater 49418.6.4 Agricultural Wastewater 49418.7 Regeneration and Reuse 49518.8 Limitations, Challenges, and Future Outlooks 49718.9 Conclusion 498References 49819 Sustainable Biocomposite-Based Biomass for Aerospace Applications 517Mazlan Norkhairunnisa, Tay Chai Hua, Farid Bajuri, Izzat N. Yaacob, and Kamarul A. Ahmad19.1 Introduction 51719.2 Bioresin 51819.2.1 Biodegradability and Properties of Sustainable Bioresin 51919.3 Biocomposite 52319.3.1 Design of Biocomposite for Aerospace Application Reinforcement 52419.3.1.1 Plant-Based Fiber 52419.3.1.2 Animal-Based Fiber 52419.3.1.3 Biofillers 52519.3.2 Material Selection and Its Properties in Aerospace Applications 52519.3.3 Biocomposite Performances and Applications in Aerospace Structure Design 52619.3.3.1 Advantageous and Disadvantageous of Composite in Aerospace Applications 52619.3.3.2 Application of Biocomposite in Aircraft Structure 52719.3.4 Sustainability and Environmental Effects 52819.4 Summary 529References 53020 Biomass-based Food Packaging 537Asif Hafeez, Madeha Jabbar, Yasir Nawab, and Khubab Shaker20.1 Food Packaging Materials 53720.2 Food Packaging Material Perquisites 53920.2.1 Food Packaging Properties 54020.2.1.1 Thermal Properties 54020.2.1.2 Mechanical Properties 54020.2.1.3 Chemical Reactivity 54020.2.1.4 Optical Properties 54120.2.1.5 Gas Barrier Properties 54120.2.1.6 Moisture Barrier Properties 54120.2.1.7 Durability 54120.2.2 Packaged Product Characteristics 54220.2.3 Individual Package Properties 54220.2.4 Storage and Distribution Conditions 54320.3 Environmental Impact of Conventional Food Packaging 54320.4 Sources of Biomass 54520.5 Processing of Biomass to Food Packaging 54520.5.1 Thermoplasticization of Biomass 54620.5.2 Film Blowing 54720.5.3 Foaming Technology 54720.6 Food Packaging from Agricultural Biomass 54720.6.1 Rice Straw 54820.6.2 Wheat Straw 54920.6.3 Sugarcane Bagasse 54920.7 Conclusion 550References 55021 Recycling Plant Biomass and Life Cycle Assessment in Circular Economy Systems 557Joan Nyika, Megersa Dinka, and Adeolu Adesoji Adediran21.1 Introduction 55721.2 Process of Recycling Plant Biomass 55821.2.1 Gasification of Plant Biomass 55921.2.2 Pyrolysis of Plant Biomass 56021.2.3 Combustion of Plant Biomass 56121.2.4 Biological Conversion of Plant Biomass 56221.3 Processes of Life Cycle Assessment 56221.4 Literature Review on Life Cycle Assessment for Plant Biomass Recycling 56421.5 Conclusion 568References 56822 The Handling, Storage, and Preservation of Plant Biomass 575Joan Nyika, Megersa Dinka, and Adeolu A. Adediran22.1 Introduction 57522.2 Characteristics of Plant Biomass 57622.3 Handling of Plant Biomass 57822.4 Storage and Preservation of Plant Biomass 58022.4.1 Dry Storage Systems 58122.4.2 Wet Storage Systems 58322.4.3 Preservation of Plant Biomass 58422.5 Conclusion 586References 586Index 591
Du kanske också är intresserad av
Non-Destructive Material Characterization Methods
Akira Otsuki, Seiko Jose, Manasa Mohan, Sabu Thomas, Sweden) Otsuki, Akira (Visiting Professor, Lulea University of Technology; Unit Coordinator and Leading Professor, Unit “Mine Tailings?, Universidad Adolfo Ibanez., India) Jose, Seiko (Scientist, Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, India) Mohan, Manasa (Kothari postdoctoral fellow, School of Energy Materials, Mahathma Gandhi University, Kottayam, Kerala, India) Thomas, Sabu (Professor, International and Interuniversity Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala
4 219 kr
Handbook of Museum Textiles, Volume 1
Seiko Jose, Sabu Thomas, Pintu Pandit, Ritu Pandey, Vandana Gupta, India) Jose, Seiko (Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, Sabu (Mahatma Gandhi University) Thomas, India) Pandit, Pintu (National Institute of Fashion Technology, India) Pandey, Ritu (Chandra Shekhar Azad University of Agriculture & Technology (CSAUAT) Kanpur, Gujarat) Gupta, Vandana (Parul Institute of Design & Fine Arts at Parul University, Vadodara
2 919 kr
Handbook of Museum Textiles, Volume 2
Seiko Jose, Sabu Thomas, Pintu Pandit, Ritu Pandey, India) Jose, Seiko (Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, Sabu (Mahatma Gandhi University) Thomas, India) Pandit, Pintu (National Institute of Fashion Technology, India) Pandey, Ritu (Chandra Shekhar Azad University of Agriculture & Technology (CSAUAT) Kanpur
2 989 kr
The Wool Handbook
Seiko Jose, Sabu Thomas, Gautam Basu, India) Jose, Seiko (Scientist, Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, India) Thomas, Sabu (Professor, International and Interuniversity Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala, India) Basu, Gautam (Ex-Principal Scientist and Head, Mechanical Processing Division, ICAR-National Institute of Natural Fibre Engineering and Technology, Kolkata
3 359 kr
Wool Fiber Reinforced Polymer Composites
Sabu Thomas, Seiko Jose, India) Thomas, Sabu (Professor, International and Interuniversity Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala, India) Jose, Seiko (Scientist, Central Sheep and Wool Research Institute, Avikanagar, Rajasthan
3 989 kr
Chemistry and Bioactive Components of Turmeric
Sreerag Gopi, Sabu Thomas, Ajaikumar B Kunnumakkara, Bharat B Aggarwal, Augustine Amalraj, India) Gopi, Sreerag (Molecules Food Solution Private Limited, India) Thomas, Sabu (Mahatma Gandhi University, India) Kunnumakkara, Ajaikumar B (Indian Institute of Technology Guwahati, USA) Aggarwal, Bharat B (Inflammation Research Center, India) Amalraj, Augustine (Molecules Food Solutions Private Limited
3 939 kr