Civil Avionics Systems
Inbunden, Engelska, 2013
Av Ian Moir, Allan Seabridge, Malcolm Jukes, Ian (Independent Consultant) Moir, UK) Seabridge, Allan (BAE Systems, UK) Jukes, Malcolm (Smiths Group, Cheltenham, Peter Belobaba, Jonathan Cooper
1 659 kr
Produktinformation
- Utgivningsdatum2013-10-11
- Mått178 x 252 x 34 mm
- Vikt1 075 g
- FormatInbunden
- SpråkEngelska
- SerieAerospace Series
- Antal sidor608
- Upplaga2
- FörlagJohn Wiley & Sons Inc
- ISBN9781118341803
Tillhör följande kategorier
Ian Moir, Moir Associates, UK, After 20 years in the royal Air Force as an engineering officer, Ian went on to Smiths Industries in the UK where he was involved in a number of advanced projects. Since retiring from Smiths he is now in demand as a highly respected consultant. Ian has broad and detailed experience working in aircraft avionics systems in both military and civil aircraft. From the RAF Tornado and Apache helicopter to the Boeing 777, Ian's work has kept him at the forefront of new system developments and integrated systems in the areas of more-electric technology and systems implementations. He has a special interest in fostering training and education in aerospace engineering.Allan Seabridge, Seabridge Systems Ltd, UK, Allan Seabridge retired as Head of Flight Systems Engineering after a long career with BAE Systems. He has 36 years experience in aerospace systems engineering, business development and research & development, with major projects worked on including Canberra, Jaguar, Tornado, EAP, Typhoon & Nimrod. Since retiring he has developed an interest in engineering education leading to the design and delivery of systems and engineering courses at a number of UK universities at undergraduate and postgraduate level. He also provides technical consultancy to companies in the aerospace industry.Malcolm Jukes, UK, Malcolm Jukes has over 35 years experience in the aerospace industry, mostly working for the Smiths Group at Cheltenham, UK. Among his many responsibilities as Chief Engineer for Defence Systems Cheltenham, Malcolm managed the design and experimental flight trials of the first UK Electronic Flight Instrument System (EFIS). Malcolm is now an aerospace consultant operating in the areas of displays, display systems, and mission computing.
- About the Authors xixSeries Preface xxiPreface to Second Edition xxiiPreface to First Edition xxiiiAcknowledgements xxvList of Abbreviations xxvi1 Introduction 11.1 Advances since 2003 11.2 Comparison of Boeing and Airbus Solutions 21.3 Outline of Book Content 21.3.1 Enabling Technologies and Techniques 31.3.2 Functional Avionics Systems 41.3.3 The Flight Deck 41.4 The Appendices 42 Avionics Technology 72.1 Introduction 72.2 Avionics Technology Evolution 82.2.1 Introduction 8References 773 Data Bus Networks 793.1 Introduction 793.2 Digital Data Bus Basics 80References 1184 System Safety 1194.1 Introduction 1194.2 Flight Safety 1204.2.1 Introduction 1204.2.2 Flight Safety Overview 1204.2.3 Accident Causes 124References 1575 Avionics Architectures 1595.1 Introduction 1595.2 Avionics Architecture Evolution 1595.2.1 Overview of Architecture Evolution 1595.2.2 Distributed Analogue Architecture 1615.2.3 Distributed Digital Architecture 1625.2.4 Federated Digital Architecture 1645.2.5 Integrated Modular Avionics 1665.2.6 Open System Standards 1695.3 Avionic Systems Domains 1695.3.1 The Aircraft as a System of Systems 1695.3.2 ATA Classification 1715.4 Avionics Architecture Examples 1725.4.1 The Manifestations of IMA 1725.4.2 The Airbus A320 Avionics Architecture 1735.4.3 The Boeing 777 Avionics Architecture 1745.4.4 Honeywell EPIC Architecture 1795.4.5 The Airbus A380 and A 350 1805.4.6 The Boeing 787 1845.5 IMA Design Principles 1885.6 The Virtual System 1895.6.1 Introduction to Virtual Mapping 1895.6.2 Implementation Example: Airbus A 380 1915.6.3 Implementation Example: Boeing 787 1935.7 Partitioning 1945.8 IMA Fault Tolerance 1955.8.1 Fault Tolerance Principles 1955.8.2 Data Integrity 1965.8.3 Platform Health Management 1975.9 Network Definition 1975.10 Certification 1985.10.1 IMA Certification Philosophy 1985.10.2 Platform Acceptance 1995.10.3 Hosted Function Acceptance 2005.10.4 Cost of Change 2005.10.5 Configuration Management 2015.11 IMA Standards 201References 2036 Systems Development 2056.1 Introduction 2056.1.1 Systems Design 2056.1.2 Development Processes 2066.2 System Design Guidelines 2066.2.1 Key Agencies and Documentation 2066.2.2 Design Guidelines and Certification Techniques 2076.2.3 Guidelines for Development of Civil Aircraft and Systems – SAE ARP 4754A 2086.2.4 Guidelines and Methods for Conducting the Safety Assessment – SAE ARP 4761 2086.2.5 Software Considerations – RTCA DO-178B 2096.2.6 Hardware Development – RTCA DO- 254 2096.2.7 Integrated Modular Avionics – RTCA DO- 297 2096.2.8 Equivalence of US and European Specifications 2106.3 Interrelationship of Design Processes 2106.3.1 Functional Hazard Assessment (FHA) 2106.3.2 Preliminary System Safety Assessment (PSSA) 2126.3.3 System Safety Assessment (SSA) 2136.3.4 Common Cause Analysis (CCA) 2136.4 Requirements Capture and Analysis 2136.4.1 Top-Down Approach 2146.4.2 Bottom-Up Approach 2146.4.3 Requirements Capture Example 2156.5 Development Processes 2176.5.1 The Product Life-Cycle 2176.5.2 Concept Phase 2186.5.3 Definition Phase 2196.5.4 Design Phase 2206.5.5 Build Phase 2216.5.6 Test Phase 2226.5.7 Operate Phase 2236.5.8 Disposal or Refurbish Phase 2236.6 Development Programme 2246.6.1 Typical Development Programme 2246.6.2 ‘V’ Diagram 2266.7 Extended Operations Requirements 2266.7.1 ETOPS Requirements 2266.7.2 Equipment Requirements 2286.8 ARINC Specifications and Design Rigour 2296.8.1 ARINC 400 Series 2296.8.2 ARINC 500 Series 2296.8.3 ARINC 600 Series 2296.8.4 ARINC 700 Series 2306.8.5 ARINC 800 Series 2306.8.6 ARINC 900 Series 2306.9 Interface Control 2316.9.1 Introduction 2316.9.2 Interface Control Document 2316.9.3 Aircraft-Level Data-Bus Data 2316.9.4 System Internal Data-Bus Data 2336.9.5 Internal System Input/Output Data 2336.9.6 Fuel Component Interfaces 233References 2337 Electrical Systems 2357.1 Electrical Systems Overview 2357.1.1 Introduction 2357.1.2 Wider Development Trends 2367.1.3 Typical Civil Electrical System 2387.2 Electrical Power Generation 2397.2.1 Generator Control Function 2397.2.2 DC System Generation Control 2407.2.3 AC Power Generation Control 2427.3 Power Distribution and Protection 2487.3.1 Electrical Power System Layers 2487.3.2 Electrical System Configuration 2487.3.3 Electrical Load Protection 2507.3.4 Power Conversion 2537.4 Emergency Power 2547.4.1 Ram Air Turbine 2557.4.2 Permanent Magnet Generators 2567.4.3 Backup Systems 2577.4.4 Batteries 2587.5 Power System Architectures 2597.5.1 Airbus A320 Electrical System 2597.5.2 Boeing 777 Electrical System 2617.5.3 Airbus A380 Electrical System 2647.5.4 Boeing 787 Electrical System 2657.6 Aircraft Wiring 2687.6.1 Aircraft Breaks 2697.6.2 Wiring Bundle Definition 2707.6.3 Wiring Routing 2717.6.4 Wiring Sizing 2727.6.5 Aircraft Electrical Signal Types 2727.6.6 Electrical Segregation 2747.6.7 The Nature of Aircraft Wiring and Connectors 2747.6.8 Used of Twisted Pairs and Quads 2757.7 Electrical Installation 2767.7.1 Temperature and Power Dissipation 2787.7.2 Electromagnetic Interference 2787.7.3 Lightning Strikes 2807.8 Bonding and Earthing 2807.9 Signal Conditioning 2827.9.1 Signal Types 2827.9.2 Signal Conditioning 2837.10 Central Maintenance Systems 2847.10.1 Airbus A330/340 Central Maintenance System 2857.10.2 Boeing 777 Central Maintenance Computing System 288References 290Further Reading 2908 Sensors 2918.1 Introduction 2918.2 Air Data Sensors 2928.2.1 Air Data Parameters 2928.2.2 Pressure Sensing 2928.2.3 Temperature Sensing 2928.2.4 Use of Pressure Data 2948.2.5 Pressure Datum Settings 2958.2.6 Air Data Computers (ADCs) 2978.2.7 Airstream Direction Detectors 2998.2.8 Total Aircraft Pitot-Static System 3008.3 Magnetic Sensors 3018.3.1 Introduction 3018.3.2 Magnetic Field Components 3028.3.3 Magnetic Variation 3038.3.4 Magnetic Heading Reference System 3058.4 Inertial Sensors 3068.4.1 Introduction 3068.4.2 Position Gyroscopes 3068.4.3 Rate Gyroscopes 3068.4.4 Accelerometers 3088.4.5 Inertial Reference Set 3098.4.6 Platform Alignment 3128.4.7 Gimballed Platform 3158.4.8 Strap-Down System 3178.5 Combined Air Data and Inertial 3178.5.1 Introduction 3178.5.2 Evolution of Combined Systems 3178.5.3 Boeing 777 Example 3198.5.4 ADIRS Data-Set 3208.5.5 Further System Integration 3208.6 Radar Sensors 3238.6.1 Radar Altimeter 3238.6.2 Weather Radar 324References 3279 Communications and Navigation Aids 3299.1 Introduction 3299.1.1 Introduction and RF Spectrum 3299.1.2 Equipment 3319.1.3 Antennae 3329.2 Communications 3329.2.1 Simple Modulation Techniques 3329.2.2 HF Communications 3359.2.3 VHF Communications 3379.2.4 SATCOM 3399.2.5 Air Traffic Control (ATC) Transponder 3429.2.6 Traffic Collision Avoidance System (TCAS) 3459.3 Ground-Based Navigation Aids 3479.3.1 Introduction 3479.3.2 Non-Directional Beacon 3489.3.3 VHF Omni-Range 3489.3.4 Distance Measuring Equipment 3489.3.5 TACAN 3509.3.6 VOR/TAC 3509.4 Instrument Landing Systems 3509.4.1 Overview 3509.4.2 Instrument Landing System 3519.4.3 Microwave Landing System 3549.4.4 GNSS Based Systems 3549.5 Space-Based Navigation Systems 3549.5.1 Introduction 3549.5.2 Global Positioning System 3559.5.3 GLONASS 3589.5.4 Galileo 3599.5.5 COMPASS 3599.5.6 Differential GPS 3609.5.7 Wide Area Augmentation System (WAAS/SBAS) 3609.5.8 Local Area Augmentation System (LAAS/LBAS) 3609.6 Communications Control Systems 362References 36310 Flight Control Systems 36510.1 Principles of Flight Control 36510.1.1 Frame of Reference 36510.1.2 Typical Flight Control Surfaces 36610.2 Flight Control Elements 36810.2.1 Interrelationship of Flight Control Functions 36810.2.2 Flight Crew Interface 37010.3 Flight Control Actuation 37110.3.1 Conventional Linear Actuation 37210.3.2 Linear Actuation with Manual and Autopilot Inputs 37210.3.3 Screwjack Actuation 37310.3.4 Integrated Actuation Package 37410.3.5 FBW and Direct Electrical Link 37610.3.6 Electrohydrostatic Actuation (EHA) 37710.3.7 Electromechanical Actuation (EMA) 37810.3.8 Actuator Applications 37910.4 Principles of Fly-By-Wire 37910.4.1 Fly-By-Wire Overview 37910.4.2 Typical Operating Modes 38010.4.3 Boeing and Airbus Philosophies 38210.5 Boeing 777 Flight Control System 38310.5.1 Top Level Primary Flight Control System 38310.5.2 Actuator Control Unit Interface 38410.5.3 Pitch and Yaw Channel Overview 38610.5.4 Channel Control Logic 38710.5.5 Overall System Integration 38910.6 Airbus Flight Control Systems 38910.6.1 Airbus FBW Evolution 38910.6.2 A320 FBW System 39110.6.3 A330/340 FBW System 39310.6.4 A380 FBW System 39410.7 Autopilot Flight Director System 39610.7.1 Autopilot Principles 39610.7.2 Interrelationship with the Flight Deck 39810.7.3 Automatic Landing 40010.8 Flight Data Recorders 40110.8.1 Principles of Flight Data Recording 40110.8.2 Data Recording Environments 40310.8.3 Future Requirements 403References 40411 Navigation Systems 40511.1 Principles of Navigation 40511.1.1 Basic Navigation 40511.1.2 Navigation using Ground-Based Navigation Aids 40711.1.3 Navigation using Air Data and Inertial Navigation 40811.1.4 Navigation using Global Navigation Satellite Systems 41011.1.5 Flight Technical Error – Lateral Navigation 41111.1.6 Flight Technical Error – Vertical Navigation 41211.2 Flight Management System 41311.2.1 Principles of Flight Management Systems (FMS) 41311.2.2 FMS Crew Interface – Navigation Display 41411.2.3 FMS Crew Interface – Control and Display Unit 41711.2.4 FMS Functions 42011.2.5 FMS Procedures 42111.2.6 Standard Instrument Departure 42311.2.7 En-Route Procedures 42311.2.8 Standard Terminal Arrival Routes 42411.2.9 ILS Procedures 42711.2.10 Typical FMS Architecture 42711.3 Electronic Flight Bag 42711.3.1 EFB Functions 42711.3.2 EFB Implementation 42911.4 Air Traffic Management 43011.4.1 Aims of Air Traffic Management 43011.4.2 Communications, Navigation, Surveillance 43011.4.3 NextGen 43111.4.4 Single European Sky ATM Research (SESAR) 43211.5 Performance-Based Navigation 43311.5.1 Performance-Based Navigation Definition 43311.5.2 Area Navigation (RNAV) 43411.5.3 Required Navigation Performance (RNP) 43811.5.4 Precision Approaches 44011.6 Automatic Dependent Surveillance – Broadcast 44211.7 Boeing and Airbus Implementations 44211.7.1 Boeing Implementation 44211.7.2 Airbus Implementation 44411.8 Terrain Avoidance Warning System (TAWS) 444References 447Historical References (in Chronological Order) 44712 Flight Deck Displays 44912.1 Introduction 44912.2 First Generation Flight Deck: the Electromagnetic Era 45012.2.1 Embryonic Primary Flight Instruments 45012.2.2 The Early Pioneers 45112.2.3 The ‘Classic’ Electromechanical Flight Deck 45312.3 Second Generation Flight Deck: the Electro-Optic Era 45512.3.1 The Advanced Civil Flight Deck 45512.3.2 The Boeing 757 and 767 45612.3.3 The Airbus A320, A330 and A 340 45712.3.4 The Boeing 747-400 and 777 45812.3.5 The Airbus A 380 46012.3.6 The Boeing 787 46112.3.7 The Airbus A 350 46212.4 Third Generation: the Next Generation Flight Deck 46312.4.1 Loss of Situational Awareness in Adverse Operational Conditions 46312.4.2 Research Areas 46312.4.3 Concepts 46412.5 Electronic Centralised Aircraft Monitor (ECAM) System 46512.5.1 ECAM Scheduling 46512.5.2 ECAM Moding 46512.5.3 ECAM Pages 46612.5.4 Qantas Flight QF 32 46612.5.5 The Boeing Engine Indicating and Crew Alerting System (EICAS) 46812.6 Standby Instruments 46812.7 Head-Up Display Visual Guidance System (HVGS) 46912.7.1 Introduction to Visual Guidance Systems 46912.7.2 HVGS on Civil Transport Aircraft 47012.7.3 HVGS Installation 47012.7.4 HVGS Symbology 47112.8 Enhanced and Synthetic Vision Systems 47312.8.1 Overview 47312.8.2 EVS, EFVS and SVS Architecture Diagrams 47412.8.3 Minimum Aviation System Performance Standard (MASPS) 47412.8.4 Enhanced Vision Systems (EVS) 47412.8.5 Enhanced Flight Vision Systems (EFVS) 47812.8.6 Synthetic Vision Systems (SVS) 48112.8.7 Combined Vision Systems 48412.9 Display System Architectures 48612.9.1 Airworthiness Regulations 48612.9.2 Display Availability and Integrity 48612.9.3 Display System Functional Elements 48712.9.4 Dumb Display Architecture 48812.9.5 Semi-Smart Display Architecture 49012.9.6 Fully Smart (Integrated) Display Architecture 49012.10 Display Usability 49112.10.1 Regulatory Requirements 49112.10.2 Display Format and Symbology Guidelines 49212.10.3 Flight Deck Geometry 49212.10.4 Legibility: Resolution, Symbol Line Width and Sizing 49412.10.5 Colour 49412.10.6 Ambient Lighting Conditions 49612.11 Display Technologies 49812.11.1 Active Matrix Liquid Crystal Displays (AMLCD) 49912.11.2 Plasma Panels 50112.11.3 Organic Light-Emitting Diodes (O-LED) 50112.11.4 Electronic Paper (e-paper) 50212.11.5 Micro-Projection Display Technologies 50312.11.6 Head-Up Display Technologies 50412.11.7 Inceptors 50512.12 Flight Control Inceptors 50612.12.1 Handling Qualities 50712.12.2 Response Types 50712.12.3 Envelope Protection 50812.12.4 Inceptors 508References 50913 Military Aircraft Adaptations 51113.1 Introduction 51113.2 Avionic and Mission System Interface 51213.2.1 Navigation and Flight Management 51513.2.2 Navigation Aids 51613.2.3 Flight Deck Displays 51713.2.4 Communications 51813.2.5 Aircraft Systems 51813.3 Applications 51913.3.1 Green Aircraft Conversion 51913.3.2 Personnel, Material and Vehicle Transport 52113.3.3 Air-to-Air Refuelling 52113.3.4 Maritime Patrol 52213.3.5 Airborne Early Warning 52813.3.6 Ground Surveillance 52813.3.7 Electronic Warfare 53013.3.8 Flying Classroom 53013.3.9 Range Target/Safety 530Reference 531Further Reading 531Appendices 533Introduction to Appendices 533Appendix A: Safety Analysis – Flight Control System 534A. 1 Flight Control System Architecture 534A. 2 Dependency Diagram 535A. 3 Fault Tree Analysis 537Appendix B: Safety Analysis – Electronic Flight Instrument System 539B. 1 Electronic Flight Instrument System Architecture 539B. 2 Fault Tree Analysis 540Appendix C: Safety Analysis – Electrical System 543C. 1 Electrical System Architecture 543C. 2 Fault Tree Analysis 543Appendix D: Safety Analysis – Engine Control System 546D. 1 Factors Resulting in an In-Flight Shut Down 546D. 2 Engine Control System Architecture 546D. 3 Markov Analysis 548Simplified Example (all failure rates per flight hour) 549Index 551
“In summary, this book has been researched, prepared and produced to a very high standard. It will provide a wealth of information for students in FE/HE, and will serve as an excellent resource throughout the industry.” (Aerospace, 1 December 2014)
Du kanske också är intresserad av
Small Unmanned Fixed-wing Aircraft Design
Andrew J. Keane, András Sóbester, James P. Scanlan, UK) Keane, Andrew J. (University of Southampton, UK) Sobester, Andras (University of Southampton, UK) Scanlan, James P. (University of Southampton, Andrew J Keane, James P Scanlan, Peter Belobaba, Jonathan Cooper, Allan Seabridge
1 549 kr
Gas Turbine Propulsion Systems
Bernie MacIsaac, Roy Langton, Peter Belobaba, Jonathan Cooper, Allan Seabridge, Canada) MacIsaac, Bernie (GasTOPS Ltd., Ottawa, USA) Langton, Roy (Parker Aerospace Group, Peter (MIT) Belobaba, UK) Cooper, Jonathan, O.B.E. (University of Liverpool, UK) Seabridge, Allan (BAE Systems, Bernie Macisaac
1 659 kr
Theory and Practice of Aircraft Performance
Ajoy Kumar Kundu, Mark A. Price, David Riordan, Peter Belobaba, Jonathan Cooper, Allan Seabridge, UK) Kundu, Ajoy Kumar (Queen's University Belfast (QUB), UK) Price, Mark A. (Queen's University Belfast (QUB), Belfast) Riordan, David (Bombardier, Peter (MIT) Belobaba, UK) Cooper, Jonathan, O.B.E. (University of Liverpool, UK) Seabridge, Allan (BAE Systems
1 249 kr