Biorefinery of Inorganics
Recovering Mineral Nutrients from Biomass and Organic Waste
Inbunden, Engelska, 2020
Av Erik Meers, Gerard Velthof, Evi Michels, Rene Rietra, Christian V Stevens
2 519 kr
Produktinformation
- Utgivningsdatum2020-05-14
- Mått173 x 249 x 31 mm
- Vikt975 g
- FormatInbunden
- SpråkEngelska
- SerieWiley Series in Renewable Resource
- Antal sidor472
- FörlagJohn Wiley & Sons Inc
- ISBN9781118921456
Tillhör följande kategorier
Editors Erik Meers, Department of Green Chemistry & Technology, Ghent University, BelgiumGerard Velthof, Wageningen Environmental Research, The NetherlandsEvi Michels, Department of Green Chemistry & Technology, Ghent University, BelgiumRené Rietra, Wageningen Environmental Research, The Netherlands Series Editor Christian Stevens, Faculty of Bioscience Engineering, Ghent University, Belgium
- List of Contributors xixSeries Preface xxvPreface xxviiSection I Global Nutrient Flows and Cycling in Food Systems 11 Global Nutrient Flows and Cycling in Food Systems 3Qian Liu, Jingmeng Wang, Yong Hou, Kimo van Dijk, Wei Qin, Jan Peter Lesschen, Gerard Velthof, and Oene Oenema1.1 Introduction 31.2 Primary and Secondary Driving Forces of Nutrient Cycling 41.3 Anthropogenic Influences on Nutrient Cycling 61.4 The Global Nitrogen Cycle 71.5 The Global Phosphorus Cycle 91.6 Changes in Fertilizer Use During the Last 50Years 121.7 Changes in Harvested Crop Products and in Crop Residues During the Last 50Years 141.8 Changes in the Amounts of N and P in Animal Products and Manures 151.9 Changes in the Trade of Food and Feed 161.10 Changes in Nutrient Balances 161.11 General Discussion 17References 20Section II The Role of Policy Frameworks in the Transition Toward Nutrient Recycling 232.1 Toward a Framework that Stimulates Mineral Recovery in Europe 25Nicolas De La Vega and Gregory Reuland2.1.1 The Importance of Managing Organic Residues 252.1.2 The Rise of Nutrient and Carbon Recycling 262.1.3 The European Framework for Nutrient Recovery and Reuse (NRR) 272.1.4 EU Waste Legislation 272.1.5 Moving from Waste to Product Legislation and the Interplay with Other EU Legislation 292.1.6 Complying with Existing Environmental and Health & Safety Legislation 302.1.7 Conclusion 32References 322.2 Livestock Nutrient Management Policy Framework in the United States 33Georgine Yorgey and Chad Kruger2.2.1 Introduction 332.2.2 The Legal-Regulatory Framework for Manure Nutrient Management 342.2.3 Current Manure-Management Practices 352.2.4 Public Investments for Improvement of Manure-Management Practices 362.2.5 The Role of the Judicial Process and Consumer-Driven Preferences 372.2.6 Limitations of the Current Framework 382.2.7 Conclusion 39References 402.3 Biomass Nutrient Management in China: The Impact of Rapid Growth and Energy Demand 43Paul Thiers2.3.1 Introduction 432.3.2 The Impact of Economic Liberalization Policy in the 1980s and 1990s 432.3.3 Environmental Protection Efforts and Unintended Consequences 442.3.4 Renewable Energy Policy and Its Impact on Biomass Management 462.3.5 Conclusion 49References 502.4 Nutrient Cycling in Agriculture in China 53Lin Ma, Yong Hou, and Zhaohai Bai2.4.1 Introduction 532.4.2 Nutrient Cycling in China 542.4.3 Effects on the Environment 552.4.4 Nutrient Management Policies 572.4.5 Future Perspectives 592.4.5.1 National Nutrient Management Strategy 592.4.5.2 Challenges of Technology Transfer in Manure Management 592.4.5.3 Environmental Protection 602.4.6 Conclusion 61References 63Section III State of the Art and Emerging Technologies in Nutrient Recovery from Organic Residues 653.1 Manure as a Resource for Energy and Nutrients 67Ivona Sigurnjak, Reinhart Van Poucke, Céline Vaneeckhaute, Evi Michels, and Erik Meers3.1.1 Introduction 673.1.2 Energy Production from Animal Manure 683.1.2.1 Anaerobic Digestion 713.1.2.2 Thermochemical Conversion Process 733.1.3 Nutrient Recovery Techniques 763.1.3.1 Phosphorus Precipitation 773.1.3.2 Ammonia Stripping and Scrubbing 773.1.3.3 Membrane Filtration 783.1.3.4 Phosphorus Extraction from Ashes 793.1.4 Conclusion 79References 793.2 Municipal Wastewater as a Source for Phosphorus 83Aleksandra Bogdan, Ana Alejandra Robles Aguilar, Evi Michels, and Erik Meers3.2.1 Introduction 833.2.2 Phosphorus Removal from Wastewater 843.2.3 Sludge Management 843.2.4 Current State of P Recovery Technologies 853.2.4.1 Phosphorus Salts Precipitation 853.2.4.2 Phosphorus Recovery Via Wet-Chemical Processes 873.2.4.3 Phosphorus Recovery Via Thermal Processes 883.2.4.4 Choice of Phosphorus Technologies Today 893.2.5 Future P Recovery Technologies 903.2.5.1 Phosphorus Salt Recovery Upgrades 903.2.5.2 Thermal Processes 913.2.5.3 Natural Process for the Recovery of Phosphorus 913.2.6 Conclusion 92References 923.3 Ammonia Stripping and Scrubbing for Mineral Nitrogen Recovery 95Claudio Brienza, Ivona Sigurnjak, Evi Michels, and Erik Meers3.3.1 Introduction 953.3.2 Ammonia Stripping and Scrubbing from Biobased Resources 963.3.2.1 Acid Scrubbing of Exhaust Air 973.3.2.2 Stripping and Scrubbing from Manure 973.3.2.3 Stripping and Scrubbing from Anaerobic Digestate 973.3.2.4 Manure and Digestate Processing by Evaporation 983.3.3 Alternative Scrubbing Agents 983.3.3.1 Organic Acids 983.3.3.2 Nitric Acid 983.3.3.3 Gypsum 993.3.4 Industrial Cases of Stripping and Scrubbing 993.3.4.1 Waste Air Cleaning Via Acid Scrubbing 993.3.4.2 Raw Digestate Processing Via Stripping and Scrubbing and Recirculation of the N-Depleted Digestate 993.3.4.3 Liquid Fraction Digestate Processing Via Stripping and Scrubbing 1003.3.4.4 Liquid Fraction of Digestate Processing Via Membrane Separation and Stripping and Scrubbing 1003.3.5 Product Quality of Ammonium Sulfate and Ammonium Nitrate 1003.3.5.1 Ammonium Sulfate 1013.3.5.2 Ammonium Nitrate 1023.3.6 Conclusion 102References 103Section IV Inspiring Cases in Nutrient Recovery Processes 1074.1 Struvite Recovery from Domestic Wastewater 109Adrien Marchi, Sam Geerts, Bart Saerens, Marjoleine Weemaes, Lies De Clercq, and Erik Meers4.1.1 Introduction 1094.1.2 Process Description 1104.1.3 Analyses and Tests 1114.1.3.1 Mass Balance 1114.1.3.2 Struvite Purity 1124.1.4 Operational Benefits 1144.1.4.1 Enhanced Dewaterability 1144.1.4.2 Enhanced Recovery Potential 1154.1.4.3 Reduced Scaling 1154.1.4.4 Reduced Phosphorus Content in the Sludge Pellets 1164.1.4.5 Reduced P and N Load in the Rejection Water 1164.1.5 Economic Evaluation 1164.1.6 Future Challenges 1174.1.6.1 In-Depth Quality Screening 1174.1.6.2 Improved Crystal Separation 1174.1.7 Conclusion 118References 1184.2 Mineral Concentrates from Membrane Filtration 121Paul Hoeksma and Fridtjof de Buisonjé4.2.1 Introduction 1214.2.2 Production of Mineral Concentrates 1214.2.2.1 General Set-up 1214.2.2.2 Solid/Liquid Separation 1224.2.2.3 Pre-treatment of the Liquid Fraction (Effluent from Mechanical Separation) 1234.2.2.4 Reverse Osmosis 1234.2.2.4.1 Full-Scale Pilot Production Plants 1244.2.3 Mass Balance 1244.2.4 Composition of Raw Slurry, Solid Fraction, and RO-Concentrate 1254.2.4.1 Raw Slurry 1254.2.4.2 Solid Fraction 1284.2.4.3 RO-Concentrate 1284.2.4.3.1 Nutrients and Minerals 1284.2.4.3.2 Secondary Nutrients and Trace Elements 1294.2.4.3.3 Inorganic Microcontaminants 1294.2.4.3.4 Organic Microcontaminants 1294.2.4.3.5 Volatile Fatty Acids 1294.2.5 Quality Requirements 1294.2.6 Conclusion 130References 1304.3 Pyrolysis of Agro-Digestate: Nutrient Distribution 133Evert Leijenhorst4.3.1 Introduction 1334.3.1.1 Background 1334.3.1.2 The Pyrolysis Process 1334.3.1.3 Pyrolysis of Agro-Digestate 1344.3.2 Investigation 1354.3.2.1 Materials and Methods 1354.3.2.2 Product Analysis and Evaluation 1364.3.3 Results and Discussion 1384.3.3.1 Fast Pyrolysis: Influence of Temperature 1384.3.3.1.1 Product Distribution 1384.3.3.1.2 Nutrient Recovery 1384.3.3.1.3 Product Composition 1424.3.3.2 Influence of Heating Rate 1434.3.3.2.1 Product Distribution 1434.3.3.2.2 Nutrient Recovery 1434.3.4 Conclusion 143Acknowledgment 145References 1464.4 Agronomic Effectivity of Hydrated Poultry Litter Ash 147Phillip Ehlert4.4.1 Introduction 1474.4.2 Energy Production Process 1474.4.3 Composition of HPLA 1494.4.4 Agronomic Effectivity of HPLA 1494.4.5 Phosphorus 1524.4.6 Potassium 1544.4.7 Rye Grass 1554.4.8 Acid-Neutralizing Value 1574.4.9 Efficacy 1574.4.10 Conclusion 158References 1594.5 Bioregenerative Nutrient Recovery from Human Urine: Closing the Loop in Turning Waste intoWealth 161Jayanta Kumar Biswas, Sukanta Rana, and Erik Meers4.5.1 Introduction 1614.5.2 Composition and Fertilizer Potential 1624.5.3 State of the Art of Regenerative Practices 1624.5.3.1 HU in Agriculture 1624.5.3.2 HU in Aquaculture 1644.5.4 Cautions, Concerns, and Constraints 1684.5.5 Conclusion 171References 1724.6 Pilot-Scale Investigations on Phosphorus Recovery from Municipal Wastewater 177Marie-Edith Ploteau, Daniel Klein, Johan te Marvelde, Luc Sijstermans, Anders Nättorp, Marie-Line Daumer, Hervé Paillard, Cédric Mébarki, Ania Escudero, Ole Pahl, Karl-Georg Schmelz, and Frank Zepke4.6.1 Introduction 1774.6.2 European and National Incentives to Act on Market Drivers 1784.6.3 Pilot Investigations 1794.6.3.1 Acid Leaching Solutions to Recover Phosphorus from Sewage Sludge Ashes 1794.6.3.2 Pilot Demonstration of Thermal Solutions to Recover Phosphorus from Sewage Sludge: The EuPhoRe® Process 1804.6.3.3 Demonstration of struvite solution with biological acidification to increase the P recovery from sewage sludge 1824.6.3.4 Innovative Technical Solutions to Recover P from Small-Scale WWTPs: Downscaling Struvite Precipitation for Rural Areas 1824.6.3.5 Algal-Based Solutions to Recover Phosphorus from Small-Scale WWTPs: A Promising Approach for Remote, Rural, and Island Areas 184References 186Section V Agricultural and Environmental Performance of Biobased Fertilizer Substitutes: Overview of Field Assessments 1895.1 Fertilizer Replacement Value: Linking Organic Residues to Mineral Fertilizers 191René Schils, Jaap Schröder, and Gerard Velthof5.1.1 Introduction 1915.1.2 Nutrient Pathways from Land Application to Crop Uptake 1925.1.2.1 Nitrogen 1955.1.2.2 Phosphorus 1975.1.3 Fertilizer Replacement Value 1985.1.3.1 Crop Response 2025.1.3.2 Response Period 2025.1.4 Reference Mineral Fertilizer 2025.1.4.1 Crop and Soil Type 2025.1.4.2 Application Time and Method 2025.1.4.3 Assessment Method 2035.1.5 Fertilizer Replacement Values in Fertilizer Plans 2045.1.6 Conclusion 205References 2125.2 Anaerobic Digestion and Renewable Fertilizers: Case Studies in Northern Italy 215Fabrizio Adani, Giuliana D’Imporzano, Fulvia Tambone, Carlo Riva, Gabriele Boccasile, and Valentina Orzi5.2.1 Introduction 2155.2.2 Anaerobic Digestion as a Tool to Correctly Manage Animal Slurries 2165.2.3 Chemical and Physical Modification of Organic Matter and Nutrients during Anaerobic Digestion 2185.2.4 From Digestate to Renewable Fertilizers 2205.2.4.1 N-Fertilizer from the LF of Digestate 2205.2.4.2 Organic Fertilizer from the SF of Digestate 2235.2.5 Environmental Safety and Health Protection Using Digestate 2245.2.6 Conclusion 227References 2275.3 Nutrients and Plant Hormones in Anaerobic Digestates: Characterization and Land Application 231Shubiao Wu and Renjie Dong5.3.1 Introduction 2315.3.2 Nutrient Characterization in Anaerobic Digested Slurry 2335.3.2.1 N, P, and K Contents 2335.3.2.2 Bioactive Substances 2365.3.3 Use of Digestates as Fertilizers for Plant Growth 2375.3.4 Effect of Digestate on Seed Germination 2385.3.5 Positive Effects of Digestates on Soil 2385.3.5.1 Effects on Nutrient Properties 2385.3.5.2 Effects on Microbial Activity 2395.3.5.3 Potential Negative Effects 2405.3.6 Conclusion 243References 2435.4 Enhancing Nutrient Use and Recovery from Sewage Sludge to Meet Crop Requirements 247Ruben Sakrabani5.4.1 Trends in Sewage Sludge Management in Agriculture 2475.4.2 Organomineral Fertilizer Use in Case Studies 2495.4.3 Case Study 1: Field Trial Using OMF (Broxton) 2505.4.4 Case Study 2: Field Trial Using OMF (Silsoe) 2525.4.5 Conclusion 255Acknowledgments 255References 2555.5 Application of Mineral Concentrates from Processed Manure 259Gerard Velthof, Phillip Ehlert, Jaap Schröder, Jantine van Middelkoop, Wim van Geel, and Gerard Holshof5.5.1 Introduction 2595.5.2 Product Characterization 2605.5.3 Agronomic Response 2615.5.3.1 Pot Experiments 2615.5.3.2 Field Experiments 2625.5.4 Risk of Nitrogen Losses 2635.5.4.1 Ammonia Emission 2635.5.4.2 Nitrous Oxide Emission 2645.5.4.3 Nitrate Leaching 2665.5.5 Conclusion 267References 2675.6 Liquid Fraction of Digestate and Air Scrubber Water as Sources for Mineral N 271Ivona Sigurnjak, Evi Michels, and Erik Meers5.6.1 Introduction 2715.6.2 Materials and Methods 2725.6.2.1 Experimental Design 2725.6.2.2 Fertilizer Sampling 2745.6.2.3 Plant and Soil Sampling 2755.6.2.4 Statistical Analysis 2755.6.2.5 Nitrogen Use Efficiency 2765.6.3 Impact of Fertilization Strategies on Crop Production 2765.6.4 Impact of Fertilization Strategies on Soil Properties 2795.6.5 Adjusted Nitrogen Use Efficiency 2795.6.6 Conclusion 281References 2815.7 Effects of Biochar Produced from Waste on Soil Quality 283Kor Zwart5.7.1 Introduction 2835.7.2 Biochar Production and Properties 2845.7.2.1 Pyrolysis 2845.7.2.2 Biochar Feedstock 2855.7.2.3 Biochar Composition 2865.7.2.4 Biochar Structure 2875.7.2.5 Functional Groups 2885.7.3 Effect of Biochar on Soil Fertility 2885.7.3.1 Factors Determining Soil Fertility 2885.7.3.2 Effects of Biochar on Soil Fertility Factors 2895.7.3.2.1 Soil Texture and Structure 2895.7.3.2.2 Soil Organic Matter 2905.7.3.2.3 Water Availability 2915.7.3.2.4 Nutrient Availability 2915.7.3.2.5 Cation Exchange Capacity 2925.7.3.3 Biochar as a Fertilizer or Soil Conditioner 2935.7.4 Trends in Biochar Research 294References 2955.8 Agronomic Effect of Combined Application of Biochar and Nitrogen Fertilizer: A Field Trial 301Wei Zheng and Brajendra K. Sharma5.8.1 Introduction 3015.8.2 Materials and Methods 3035.8.2.1 Biochars 3035.8.2.2 Soil and Site Description 3035.8.2.3 Field Experimental Design 3035.8.2.4 Measurements and Analyses 3045.8.3 Results and Discussion 3055.8.3.1 Effect of Biochar Application on Agronomic Yields 3055.8.3.2 Effect of Biochar as a Soil Amendment on Soil Quality 306Acknowledgments 308References 308Section VI Economics of Biobased Products and Their Mineral Counterparts 3116.1 Economics of Biobased Products and Their Mineral Counterparts 313Jeroen Buysse and Juan Tur Cardona6.1.1 Introduction 3136.1.2 Fertilizer Demand 3146.1.2.1 Crop Demand 3166.1.2.2 Drivers of the Increased Use of Mineral Fertilizers 3176.1.2.3 Drivers of Biobased Fertilizer Demand 3186.1.2.4 Importance of Fertilizer Use in the Cost of Production 3196.1.3 Fertilizer Supply 3206.1.3.1 Global Production: Statistics and Regional Distribution 3206.1.3.2 Link Between Food, Fertilizer, and Fuel Prices 3206.1.3.3 Concentration and Market Power 3226.1.3.4 Impact of a Strong Fertilizer Industry on the Production of Biobased Fertilizers 3246.1.4 Conclusion 325References 326Section VII Environmental Impact Assessment on the Production and Use of Biobased Fertilizers 3297.1 Environmental Impact Assessment on the Production and Use of Biobased Fertilizers 331Lars Stoumann Jensen, Myles Oelofse, Marieke ten Hoeve, and Sander Bruun7.1.1 Introduction 3317.1.2 Life Cycle Assessment of Biobased Fertilizer Production and Use 3327.1.2.1 Life Cycle Assessment 3327.1.2.2 The Four Phases of LCA 3337.1.2.2.1 Goal and Scope 3337.1.2.2.2 Inventory Analysis 3357.1.2.2.3 Impact Assessment 3367.1.2.2.4 Interpretation 3397.1.3 Environmental Impacts from the Production and Use of Biobased Fertilizers 3397.1.3.1 Climate Change and Global Warming Potential 3397.1.3.2 Eutrophication 3407.1.3.3 Acidification 3417.1.3.4 Eco- and Human Toxicity 3417.1.3.5 Resource Use 3437.1.3.6 Land Use: Direct and Indirect Land Use Change 3447.1.3.7 Other Impacts, Including Odor 3447.1.4 Benefits and Value of Biobased Fertilizers in Agricultural and Non-Agricultural Sectors 3457.1.4.1 Crop Yield, Nutrient Use Efficiency, and Substitution of Mineral Fertilizers 3457.1.4.2 Substitution of Peat-Based Products 3467.1.4.3 Soil Quality Enhancement 3477.1.5 Integrative Comparisons of Synthetic and Biobased Fertilizers 3477.1.5.1 Synthetic Fertilizers 3477.1.5.2 Unprocessed Animal Manures 3487.1.5.3 Mechanically Separated and Processed Animal Manures 3517.1.5.4 Manure-Based Digestates and Post-Processing Products 3527.1.5.5 Municipal Solid Waste and Wastewater Biosolids Processed by AD or Composting 3537.1.5.6 Mineral Concentrates, Extracts, Precipitates, Chars, and Ashes from Organic Wastes 3567.1.6 Conclusion 356Acknowledgments 357References 3577.2 Case Study: Acidification of Pig Slurry 363Lars Stoumann Jensen, Myles Oelofse, Marieke ten Hoeve, and Sander Bruun7.2.1 Introduction 3637.2.2 Conclusion 367Acknowledgments 368References 3687.3 Case Study: Composting and Drying & Pelletizing of Biogas Digestate 369Katarzyna Golkowska, Ian Vázquez-Rowe, Daniel Koster, Viooltje Lebuf, Enrico Benetto, Céline Vaneekhaute, and Erik Meers7.3.1 Introduction 3697.3.2 Tunnel Composting vs Baseline Scenario 3707.3.3 Drying and Pelletizing vs Baseline Scenario 3717.3.4 Assumptions and Calculations Related to Biomass Flow 3727.3.4.1 Characteristics of the Input and Output Streams 3727.3.4.2 Storage, Transport, and Spreading 3737.3.4.3 Supporting Data 3737.3.5 Goal, Scope, and Assessment Methods 3747.3.6 Results 3747.3.6.1 Tunnel Composting 3777.3.6.2 Drying and Pelletizing 3777.3.6.3 Ecosystem Quality 3787.3.6.4 Energy, Transport, and Spreading 3787.3.7 Conclusion 378Acknowledgments 379References 379Section VIII Modeling and Optimization of Nutrient Recovery from Wastes: Advances and Limitations 3818.1 Modeling and Optimization of Nutrient Recovery from Wastes: Advances and Limitations 383Céline Vaneeckhaute, Erik Meers, Evangelina Belia, and Peter Vanrolleghem8.1.1 Introduction 3838.1.2 Fertilizer Quality Specifications 3868.1.2.1 Generic Fertilizer Quality Requirements 3868.1.2.2 Points of Attention for Biobased Products 3888.1.3 Modeling and Optimization: Advances and Limitations 3888.1.3.1 Anaerobic Digestion 3898.1.3.2 Phosphorus Precipitation/Crystallization 3908.1.3.3 Ammonia Stripping and Absorption 3918.1.3.4 Acidic Air Scrubbing 3938.1.4 Modeling Objectives and Further Research 3948.1.4.1 Definition of Modeling Objectives 3948.1.4.2 Toward a Generic Nutrient Recovery Model Library 3948.1.4.3 Numerical Solution 3968.1.5 Conclusion 397Acknowledgments 397References 3978.2 Soil Dynamic Models: Predicting the Behavior of Fertilizers in the Soil 405Marius Heinen, Falentijn Assinck, Piet Groenendijk, and Oscar Schoumans8.2.1 Introduction 4058.2.2 Soil N and P Processes 4068.2.2.1 Main Dynamic Processes 4068.2.3 Other Related State and Rate Variables 4078.2.3.1 Water Flow 4078.2.3.2 Soil Water Content 4078.2.3.3 Soil Temperature 4078.2.3.4 Soil pH 4088.2.3.5 Gas Transport 4088.2.3.6 Crop Growth and Nutrient Demand 4088.2.3.7 Dynamic Simulation 4088.2.4 Organic Matter 4098.2.4.1 Multi-Pool Models with Constant Decomposition Rate Factor 4108.2.4.2 Models with a Time-Dependent Decomposition Rate Factor 4118.2.4.3 Environmental Response Factors 4138.2.5 Nitrogen 4148.2.5.1 Adsorption and Desorption 4148.2.5.2 Nitrification 4158.2.5.3 Denitrification 4158.2.5.4 Leaching 4168.2.5.5 Gaseous N Losses 4168.2.6 Phosphorus 4178.2.6.1 Adsorption, Desorption, Fixation, and Precipitation 4188.2.6.2 Calculation of Soil-Available P 4198.2.6.3 Leaching 4198.2.7 Indices of Nutrient Use Efficiency 4208.2.8 Other Nutrients 4208.2.9 Overview of Processes in Selected Soil Dynamics Models 4218.2.10 Model Parameterization of Biobased Fertilizers 4248.2.11 Conclusion 426References 429Index 437
Du kanske också är intresserad av
Waste Valorisation
Carol Sze Ki Lin, Carol Sze Ki Lin, Guneet Kaur, Chong Li, Xiaofeng Yang, Carol (City University of Hong Kong) Sze Ki Lin, Guneet (Hong Kong Baptist University) Kaur, China) Li, Chong (Chinese Academy of Agricultural Sciences, Shenzhen, China) Yang, Xiaofeng (South China University of Technology, Guangzhou, Christian V Stevens
1 999 kr