LTE for UMTS
Evolution to LTE-Advanced
Inbunden, Engelska, 2011
Av Harri Holma, Antti Toskala, Harri (Nokia Siemens Networks) Holma, Antti (Nokia Siemens Networks) Toskala
1 489 kr
Produktinformation
- Utgivningsdatum2011-03-11
- Mått175 x 252 x 32 mm
- Vikt975 g
- SpråkEngelska
- Antal sidor576
- Upplaga2
- FörlagJohn Wiley & Sons Inc
- EAN9780470660003
Tillhör följande kategorier
Harri Holma and Antti Toskala, Nokia Siemens Networks, Finland
- Preface xviiAcknowledgements xixList of Abbreviations xxi1 Introduction 1Harry Holma and Antti Toskala1.1 Mobile Voice Subscriber Growth 11.2 Mobile Data Usage Growth 11.3 Evolution of Wireline Technologies 31.4 Motivation and Targets for LTE 41.5 Overview of LTE 51.6 3GPP Family of Technologies 61.7 Wireless Spectrum 81.8 New Spectrum Identified by WRC-07 91.9 LTE-Advanced 102 LTE Standardization 13Antti Toskala2.1 Introduction 132.2 Overview of 3GPP Releases and Process 132.3 LTE Targets 152.4 LTE Standardization Phases 162.5 Evolution Beyond Release 8 182.6 LTE-Advanced for IMT-Advanced 202.7 LTE Specifications and 3GPP Structure 20References 213 System Architecture Based on 3GPP SAE 23Atte L¨ansisalmi and Antti Toskala3.1 System Architecture Evolution in 3GPP 233.2 Basic System Architecture Configuration with only E-UTRAN Access Network 253.2.1 Overview of Basic System Architecture Configuration 253.2.2 Logical Elements in Basic System Architecture Configuration 263.2.3 Self-configuration of S1-MME and X2 Interfaces 353.2.4 Interfaces and Protocols in Basic System Architecture Configuration 363.2.5 Roaming in Basic System Architecture Configuration 403.3 System Architecture with E-UTRAN and Legacy 3GPP Access Networks 413.3.1 Overview of 3GPP Inter-working System Architecture Configuration 413.3.2 Additional and Updated Logical Elements in 3GPP Inter-working System Architecture Configuration 423.3.3 Interfaces and Protocols in 3GPP Inter-working System Architecture Configuration 443.3.4 Inter-working with Legacy 3GPP CS Infrastructure 453.4 System Architecture with E-UTRAN and Non-3GPP Access Networks 463.4.1 Overview of 3GPP and Non-3GPP Inter-working System Architecture Configuration 463.4.2 Additional and Updated Logical Elements in 3GPP Inter-working System Architecture Configuration 483.4.3 Interfaces and Protocols in Non-3GPP Inter-working System Architecture Configuration 513.5 Inter-working with cdma2000® Access Networks 523.5.1 Architecture for cdma2000® HRPD Inter-working 523.5.2 Additional and Updated Logical Elements for cdma2000® HRPD Inter-working 543.5.3 Protocols and Interfaces in cdma2000® HRPD Inter-working 553.5.4 Inter-working with cdma2000® 1xRTT 563.6 IMS Architecture 563.6.1 Overview 563.6.2 Session Management and Routing 583.6.3 Databases 593.6.4 Services Elements 593.6.5 Inter-working Elements 593.7 PCC and QoS 603.7.1 PCC 603.7.2 QoS 62References 654 Introduction to OFDMA and SC-FDMA and to MIMO in LTE 67Antti Toskala and Timo Lunttila4.1 Introduction 674.2 LTE Multiple Access Background 674.3 OFDMA Basics 704.4 SC-FDMA Basics 764.5 MIMO Basics 804.6 Summary 82References 825 Physical Layer 83Antti Toskala, Timo Lunttila, Esa Tiirola, Kari Hooli, Mieszko Chmiel and Juha Korhonen5.1 Introduction 835.2 Transport Channels and their Mapping to the Physical Channels 835.3 Modulation 855.4 Uplink User Data Transmission 865.5 Downlink User Data Transmission 905.6 Uplink Physical Layer Signaling Transmission 935.6.1 Physical Uplink Control Channel, PUCCH 945.6.2 PUCCH Configuration 985.6.3 Control Signaling on PUSCH 1025.6.4 Uplink Reference Signals 1045.7 PRACH Structure 1095.7.1 Physical Random Access Channel 1095.7.2 Preamble Sequence 1105.8 Downlink Physical Layer Signaling Transmission 1125.8.1 Physical Control Format Indicator Channel (PCFICH) 1125.8.2 Physical Downlink Control Channel (PDCCH) 1135.8.3 Physical HARQ Indicator Channel (PHICH) 1155.8.4 Cell-specific Reference Signal 1165.8.5 Downlink Transmission Modes 1175.8.6 Physical Broadcast Channel (PBCH) 1195.8.7 Synchronization Signal 1205.9 Physical Layer Procedures 1205.9.1 HARQ Procedure 1215.9.2 Timing Advance 1225.9.3 Power Control 1235.9.4 Paging 1245.9.5 Random Access Procedure 1245.9.6 Channel Feedback Reporting Procedure 1275.9.7 Multiple Input Multiple Output (MIMO) Antenna Technology 1325.9.8 Cell Search Procedure 1345.9.9 Half-duplex Operation 1345.10 UE Capability Classes and Supported Features 1355.11 Physical Layer Measurements 1365.11.1 eNodeB Measurements 1365.11.2 UE Measurements and Measurement Procedure 1375.12 Physical Layer Parameter Configuration 1375.13 Summary 138References 1396 LTE Radio Protocols 141Antti Toskala, Woonhee Hwang and Colin Willcock6.1 Introduction 1416.2 Protocol Architecture 1416.3 The Medium Access Control 1446.3.1 Logical Channels 1456.3.2 Data Flow in MAC Layer 1466.4 The Radio Link Control Layer 1476.4.1 RLC Modes of Operation 1486.4.2 Data Flow in the RLC Layer 1486.5 Packet Data Convergence Protocol 1506.6 Radio Resource Control (RRC) 1516.6.1 UE States and State Transitions Including Inter-RAT 1516.6.2 RRC Functions and Signaling Procedures 1526.6.3 Self Optimization – Minimization of Drive Tests 1676.7 X2 Interface Protocols 1696.7.1 Handover on X2 Interface 1696.7.2 Load Management 1716.8 Understanding the RRC ASN.1 Protocol Definition 1726.8.1 ASN.1 Introduction 1726.8.2 RRC Protocol Definition 1736.9 Early UE Handling in LTE 1826.10 Summary 183References 1837 Mobility 185Chris Callender, Harri Holma, Jarkko Koskela and Jussi Reunanen7.1 Introduction 1857.2 Mobility Management in Idle State 1867.2.1 Overview of Idle Mode Mobility 1867.2.2 Cell Selection and Reselection Process 1877.2.3 Tracking Area Optimization 1897.3 Intra-LTE Handovers 1907.3.1 Procedure 1907.3.2 Signaling 1927.3.3 Handover Measurements 1957.3.4 Automatic Neighbor Relations 1957.3.5 Handover Frequency 1967.3.6 Handover Delay 1977.4 Inter-system Handovers 1987.5 Differences in E-UTRAN and UTRAN Mobility 1997.6 Summary 201References 2018 Radio Resource Management 203Harri Holma, Troels Kolding, Daniela Laselva, Klaus Pedersen, Claudio Rosa and Ingo Viering8.1 Introduction 2038.2 Overview of RRM Algorithms 2038.3 Admission Control and QoS Parameters 2048.4 Downlink Dynamic Scheduling and Link Adaptation 2068.4.1 Layer 2 Scheduling and Link Adaptation Framework 2068.4.2 Frequency Domain Packet Scheduling 2068.4.3 Combined Time and Frequency Domain Scheduling Algorithms 2098.4.4 Packet Scheduling with MIMO 2118.4.5 Downlink Packet Scheduling Illustrations 2118.5 Uplink Dynamic Scheduling and Link Adaptation 2168.5.1 Signaling to Support Uplink Link Adaptation and Packet Scheduling 2198.5.2 Uplink Link Adaptation 2238.5.3 Uplink Packet Scheduling 2238.6 Interference Management and Power Settings 2278.6.1 Downlink Transmit Power Settings 2278.6.2 Uplink Interference Coordination 2288.7 Discontinuous Transmission and Reception (DTX/DRX) 2308.8 RRC Connection Maintenance 2338.9 Summary 233References 2349 Self Organizing Networks (SON) 237Krzysztof Kordybach, Seppo Hamalainen, Cinzia Sartori and Ingo Viering9.1 Introduction 2379.2 SON Architecture 2389.3 SON Functions 2419.4 Self-Configuration 2419.4.1 Configuration of Physical Cell ID 2429.4.2 Automatic Neighbor Relations (ANR) 2439.5 Self-Optimization and Self-Healing Use Cases 2449.5.1 Mobility Load Balancing (MLB) 2459.5.2 Mobility Robustness Optimization (MRO) 2489.5.3 RACH Optimization 2519.5.4 Energy Saving 2519.5.5 Summary of the Available SON Procedures 2529.5.6 SON Management 2529.6 3GPP Release 10 Use Cases 2539.7 Summary 254References 25510 Performance 257Harri Holma, Pasi Kinnunen, Istv´an Z. Kov´acs, Kari Pajukoski, Klaus Pedersen and Jussi Reunanen10.1 Introduction 25710.2 Layer 1 Peak Bit Rates 25710.3 Terminal Categories 26010.4 Link Level Performance 26110.4.1 Downlink Link Performance 26110.4.2 Uplink Link Performance 26210.5 Link Budgets 26510.6 Spectral Efficiency 27010.6.1 System Deployment Scenarios 27010.6.2 Downlink System Performance 27310.6.3 Uplink System Performance 27510.6.4 Multi-antenna MIMO Evolution Beyond 2 × 2 27610.6.5 Higher Order Sectorization (Six Sectors) 28310.6.6 Spectral Efficiency as a Function of LTE Bandwidth 28510.6.7 Spectral Efficiency Evaluation in 3GPP 28610.6.8 Benchmarking LTE to HSPA 28710.7 Latency 28810.7.1 User Plane Latency 28810.8 LTE Refarming to GSM Spectrum 29010.9 Dimensioning 29110.10 Capacity Management Examples from HSPA Networks 29310.10.1 Data Volume Analysis 29310.10.2 Cell Performance Analysis 29710.11 Summary 299References 30111 LTE Measurements 303Marilynn P. Wylie-Green, Harri Holma, Jussi Reunanen and Antti Toskala11.1 Introduction 30311.2 Theoretical Peak Data Rates 30311.3 Laboratory Measurements 30511.4 Field Measurement Setups 30611.5 Artificial Load Generation 30711.6 Peak Data Rates in the Field 31011.7 Link Adaptation and MIMO Utilization 31111.8 Handover Performance 31311.9 Data Rates in Drive Tests 31511.10 Multi-user Packet Scheduling 31711.11 Latency 32011.12 Very Large Cell Size 32111.13 Summary 323References 32312 Transport 325Torsten Musiol12.1 Introduction 32512.2 Protocol Stacks and Interfaces 32512.2.1 Functional Planes 32512.2.2 Network Layer (L3) – IP 32712.2.3 Data Link Layer (L2) – Ethernet 32812.2.4 Physical Layer (L1) – Ethernet Over Any Media 32912.2.5 Maximum Transmission Unit Size Issues 33012.2.6 Traffic Separation and IP Addressing 33212.3 Transport Aspects of Intra-LTE Handover 33412.4 Transport Performance Requirements 33512.4.1 Throughput (Capacity) 33512.4.2 Delay (Latency), Delay Variation (Jitter) 33812.4.3 TCP Issues 33912.5 Transport Network Architecture for LTE 34012.5.1 Implementation Examples 34012.5.2 X2 Connectivity Requirements 34112.5.3 Transport Service Attributes 34212.6 Quality of Service 34212.6.1 End-to-End QoS 34212.6.2 Transport QoS 34312.7 Transport Security 34412.8 Synchronization from Transport Network 34712.8.1 Precision Time Protocol 34712.8.2 Synchronous Ethernet 34812.9 Base Station Co-location 34812.10 Summary 349References 34913 Voice over IP (VoIP) 351Harri Holma, Juha Kallio, Markku Kuusela, Petteri Lund´en, Esa Malkam¨aki, Jussi Ojala and Haiming Wang13.1 Introduction 35113.2 VoIP Codecs 35113.3 VoIP Requirements 35313.4 Delay Budget 35413.5 Scheduling and Control Channels 35413.6 LTE Voice Capacity 35713.7 Voice Capacity Evolution 36413.8 Uplink Coverage 36513.9 Circuit Switched Fallback for LTE 36813.10 Single Radio Voice Call Continuity (SR-VCC) 37013.11 Summary 372References 37314 Performance Requirements 375Andrea Ancora, Iwajlo Angelow, Dominique Brunel, Chris Callender, Harri Holma, Peter Muszynski, Earl Mc Cune and Laurent No¨el14.1 Introduction 37514.2 Frequency Bands and Channel Arrangements 37514.2.1 Frequency Bands 37514.2.2 Channel Bandwidth 37814.2.3 Channel Arrangements 37914.3 eNodeB RF Transmitter 38014.3.1 Operating Band Unwanted Emissions 38114.3.2 Co-existence with Other Systems on Adjacent Carriers Within the Same Operating Band 38314.3.3 Co-existence with Other Systems in Adjacent Operating Bands 38514.3.4 Transmitted Signal Quality 38914.4 eNodeB RF Receiver 39214.5 eNodeB Demodulation Performance 39814.6 User Equipment Design Principles and Challenges 40314.6.1 Introduction 40314.6.2 RF Subsystem Design Challenges 40314.6.3 RF-baseband Interface Design Challenges 41014.6.4 LTE Versus HSDPA Baseband Design Complexity 41414.7 UE RF Transmitter 41814.7.1 LTE UE Transmitter Requirement 41814.7.2 LTE Transmit Modulation Accuracy, EVM 41814.7.3 Desensitization for Band and Bandwidth Combinations (De-sense) 41914.7.4 Transmitter Architecture 42014.8 UE RF Receiver Requirements 42114.8.1 Reference Sensitivity Level 42214.8.2 Introduction to UE Self-Desensitization Contributors in FDD UEs 42414.8.3 ACS, Narrowband Blockers and ADC Design Challenges 42914.8.4 EVM Contributors: A Comparison between LTE and WCDMA Receivers 43514.9 UE Demodulation Performance 44014.9.1 Transmission Modes 44014.9.2 Channel Modeling and Estimation 44314.9.3 Demodulation Performance 44314.10 Requirements for Radio Resource Management 44614.10.1 Idle State Mobility 44714.10.2 Connected State Mobility When DRX is not Active 44714.10.3 Connected State Mobility When DRX is Active 45014.10.4 Handover Execution Performance Requirements 45014.11 Summary 451References 45215 LTE TDD Mode 455Che Xiangguang, Troels Kolding, Peter Skov, Wang Haiming and Antti Toskala15.1 Introduction 45515.2 LTE TDD Fundamentals 45515.2.1 The LTE TDD Frame Structure 45715.2.2 Asymmetric Uplink/Downlink Capacity Allocation 45915.2.3 Co-existence with TD-SCDMA 45915.2.4 Channel Reciprocity 46015.2.5 Multiple Access Schemes 46115.3 TDD Control Design 46215.3.1 Common Control Channels 46215.3.2 Sounding Reference Signal 46415.3.3 HARQ Process and Timing 46515.3.4 HARQ Design for UL TTI Bundling 46615.3.5 UL HARQ-ACK/NACK Transmission 46715.3.6 DL HARQ-ACK/NACK Transmission 46715.3.7 DL HARQ-ACK/NACK Transmission with SRI and/or CQI over PUCCH 46815.4 Semi-persistent Scheduling 46915.5 MIMO and Dedicated Reference Signals 47115.6 LTE TDD Performance 47215.6.1 Link Performance 47315.6.2 Link Budget and Coverage for the TDD System 47315.6.3 System Level Performance 47715.7 Evolution of LTE TDD 48315.8 LTE TDD Summary 484References 48416 LTE-Advanced 487Mieszko Chmiel, Mihai Enescu, Harri Holma, Tommi Koivisto, Jari Lindholm, Timo Lunttila, Klaus Pedersen, Peter Skov, Timo Roman, Antti Toskala and Yuyu Yan16.1 Introduction 48716.2 LTE-Advanced and IMT-Advanced 48716.3 Requirements 48816.3.1 Backwards Compatibility 48816.4 3GPP LTE-Advanced Study Phase 48916.5 Carrier Aggregation 48916.5.1 Impact of the Carrier Aggregation for the Higher Layer Protocol and Architecture 49216.5.2 Physical Layer Details of the Carrier Aggregation 49316.5.3 Changes in the Physical Layer Uplink due to Carrier Aggregation 49316.5.4 Changes in the Physical Layer Downlink due to Carrier Aggregation 49416.5.5 Carrier Aggregation and Mobility 49416.5.6 Carrier Aggregation Performance 49516.6 Downlink Multi-antenna Enhancements 49616.6.1 Reference Symbol Structure in the Downlink 49616.6.2 Codebook Design 49916.6.3 System Performance of Downlink Multi-antenna Enhancements 50116.7 Uplink Multi-antenna Techniques 50216.7.1 Uplink Multi-antenna Reference Signal Structure 50316.7.2 Uplink MIMO for PUSCH 50316.7.3 Uplink MIMO for Control Channels 50416.7.4 Uplink Multi-user MIMO 50516.7.5 System Performance of Uplink Multi-antenna Enhancements 50516.8 Heterogeneous Networks 50616.9 Relays 50816.9.1 Architecture (Design Principles of Release 10 Relays) 50816.9.2 DeNB – RN Link Design 51016.9.3 Relay Deployment 51116.10 Release 11 Outlook 51216.11 Conclusions 513References 51317 HSPA Evolution 515Harri Holma, Karri Ranta-aho and Antti Toskala17.1 Introduction 51517.2 Discontinuous Transmission and Reception (DTX/DRX) 51517.3 Circuit Switched Voice on HSPA 51717.4 Enhanced FACH and RACH 52017.5 Downlink MIMO and 64QAM 52117.5.1 MIMO Workaround Solutions 52317.6 Dual Cell HSDPA and HSUPA 52417.7 Multicarrier and Multiband HSDPA 52617.8 Uplink 16QAM 52717.9 Terminal Categories 52817.10 Layer 2 Optimization 52917.11 Single Frequency Network (SFN) MBMS 53117.12 Architecture Evolution 53117.13 Summary 533References 535Index 537
"Written by experts actively involved in the 3GPP standards and product development, LTE for UMTS, Second Edition gives a complete and up-to-date overview of Long Term Evolution (LTE) in a systematic and clear manner. Building upon on the success of the first edition, LTE for UMTS, Second Edition has been revised to now contain improved coverage of the Release 8 LTE details, including field performance results, transport network, self optimized networks and also covering the enhancements done in 3GPP Release 9." (FierceTelecom, 17 August 2011)