Elements of Power Electronics
Häftad, Engelska, 2015
Av Philip Krein, University of Illinois at Urbana-Champaign) Krein, Dr. Philip (Professor, Professor
1 819 kr
Produktinformation
- Utgivningsdatum2015-10-22
- Mått234 x 188 x 30 mm
- Vikt1 231 g
- SpråkEngelska
- SerieThe Oxford Series in Electrical and Computer Engineering
- Antal sidor816
- Upplaga2
- FörlagOUP USA
- EAN9780199388424
Du kanske också är intresserad av
SPICE
Gordon W. Roberts, Adel S. Sedra, Canada) Roberts, Gordon W. (Professor of Electrical Engineering, Professor of Electrical Engineering, McGill University, Canada) Sedra, Adel S. (Vice President and Provost, Vice President and Provost, University of Toronto, Gordon Roberts, Adel Sedra, Sedra Roberts
1 299 kr
Tillhör följande kategorier
Philip T. Krein holds the Grainger Endowed Chair in Electric Machinery and Electromechanics as Professor in the Department of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign. He is a past president of the IEEE Power Electronics Society, and holds twenty-eight U.S. patents, with additional patents pending.
- PART I: PRINCIPLES CHAPTER 1 -- POWER ELECTRONICS AND THE ENERGY REVOLUTION 1.1 The energy basis of electrical engineering 1.2 What is power electronics? 1.3 The need for electrical conversion 1.4 History » 1.4.1 Rectifiers and the diode » 1.4.2 Inverters and power transistors » 1.4.3 Motor drive applications » 1.4.4 Power supplies and dc-dc conversion » 1.4.5 Alternative energy processing» 1.4.6 The energy future: Power electronics as a revolution » 1.4.7 Summary and future developments 1.5 Goals and methods of electrical conversion » 1.5.1 The basic objectives » 1.5.2 The efficiency objective -- the switch » 1.5.3 The reliability objective -- simplicity and integration » 1.5.4 Important variables and notation 1.6 Energy analysis of switching power converters» 1.6.1 Conservation of energy over time» 1.6.2 Energy flows and action in dc-dc converters» 1.6.3 Energy flows and action in rectifiers1.7 Power electronics applications: a universal energy enabler» 1.7.1 Solar energy architectures» 1.7.2 Wind energy architectures» 1.7.3 Tide and wave architectures» 1.7.4 Electric transportation architectures1.8 Recap 1.9 Problems 1.10 ReferencesCHAPTER 2 -- SWITCHING CONVERSION AND ANALYSIS 2.1 Introduction 2.2 Combining conventional circuits and switches» 2.2.1 Organizing a converter to focus on switches» 2.2.2 Configuration-based analysis» 2.2.3 The switch matrix as a design tool2.3 The reality of Kirchhoff's Laws » 2.3.1 The challenge of switching violations» 2.3.2 Interconnection of voltage and current sources» 2.3.3 Short-term and long-term violations» 2.3.4 Interpretation of average inductor voltage and capacitor current» 2.3.5 Source conversion2.4 Switching functions and applications 2.5 Overview of switching devices » 2.5.1 Real switches» 2.5.2 The restricted switch» 2.5.3 Typical devices and their functions2.6 Methods for diode switch circuits 2.7 Control of converters based on switch action 2.8 Equivalent source methods 2.9 Simulation2.10 Summary and recap 2.11 Problems 2.12 References PART II: CONVERTERS AND APPLICATIONSCHAPTER 3 -- DC-DC CONVERTERS 3.1 The importance of dc-dc conversion 3.2 Why not voltage dividers? 3.3 Linear regulators» 3.3.1 Regulator circuits» 3.3.2 Regulation measures3.4 Direct dc-dc converters and filters » 3.4.1 The buck converter » 3.4.2 The boost converter » 3.4.3 Power filter design» 3.4.4 Discontinuous modes and critical inductance3.5 Indirect dc-dc converters » 3.5.1 The buck-boost converter » 3.5.2 The boost-buck converter » 3.5.3 The flyback converter » 3.5.4 SEPIC, zeta, and other indirect converters » 3.5.5 Power filters in indirect converters» 3.5.6 Discontinuous modes in indirect converters3.6 Forward converters and isolation » 3.6.1 Basic transformer operation » 3.6.2 General considerations in forward converters » 3.6.3 Catch-winding forward converter » 3.6.4 Forward converters with ac links » 3.6.5 Boost-derived (current-fed) forward converters 3.7 Bidirectional converters3.8 Dc-dc converter design issues and examples » 3.8.1 The high-side switch challenge» 3.8.2 Limitations of resistive and forward drops» 3.8.3 Regulation» 3.8.4 A solar interface converter» 3.8.5 Electric truck interface converter» 3.8.6 Telecommunications power supply3.9 Application discussion3.10 Recap 3.11 Problems 3.12 References CHAPTER 4 -- RECTIFIERS AND SWITCHED CAPACITOR CIRCUITS 4.1 Introduction 4.2 Rectifier overview 4.3 The classical rectifier -- operation and analysis 4.4 Phase controlled rectifiers » 4.4.1 The uncontrolled case. » 4.4.2 Controlled bridge and midpoint rectifiers » 4.4.3 The polyphase bridge rectifier» 4.4.4 Power filtering in rectifiers» 4.4.5 Discontinuous mode operation4.5 Active rectifiers» 4.5.1 Boost rectifier» 4.5.2 Discontinuous mode flyback and related converters as active rectifiers» 4.5.3 Polyphase active rectifiers4.6 Switched-capacitor converters» 4.6.1 Charge exchange between capacitors» 4.6.2 Capacitors and switch matrices» 4.6.3 Doublers and voltage multipliers4.7 Voltage and current doublers4.8 Converter design examples» 4.8.1 Wind-power rectifier» 4.8.2 Power system control and HVDC» 4.8.3 Solid-state lighting» 4.8.4 Vehicle active battery charger4.9 Application discussion4.10 Recap 4.11 Problems 4.12 References CHAPTER 5 -- INVERTERS 5.1 Introduction 5.2 Inverter considerations 5.3 Voltage-sourced inverters and control 5.4 Pulse-width modulation » 5.4.1 Introduction » 5.4.2 Creating PWM waveforms » 5.4.3 Drawbacks of PWM» 5.4.4 Multi-level PWM » 5.4.5 Inverter input current under PWM5.5 Three-phase inverters and space vector modulation5.6 Current-sourced inverters5.7 Filters and inverters 5.8 Inverter design examples » 5.8.1 Solar power interface» 5.8.2 Uninterruptible power supply» 5.8.3 Electric vehicle high-performance drive5.9 Application discussion5.10 Recap 5.11 Problems 5.12 References PART III: REAL COMPONENTS AND THEIR EFFECTSCHAPTER 6 -- REAL SOURCES AND LOADS 6.1 Introduction 6.2 Real loads » 6.2.1 Quasi-steady loads» 6.2.2 Transient loads» 6.2.3 Coping with load variation -- dynamic regulation6.3 Wire inductance 6.4 Critical values and examples 6.5 Interfaces for real sources » 6.5.1 Impedance behavior of sources » 6.5.2 Interfaces for dc sources » 6.5.3 Interfaces for ac sources 6.6 Source characteristics of batteries» 6.6.1 Lead-acid cells» 6.6.2 Nickel batteries» 6.6.3 Lithium-ion batteries» 6.6.4 Basis for comparison6.7 Source characteristics of fuel cells and solar cells» 6.7.1 Fuel cells» 6.7.2 Solar cells6.8 Design examples» 6.8.1 Wind farm interconnection problems» 6.8.2 Bypass capacitor benefits» 6.8.3 Interface for a boost PFC active rectifier» 6.8.4 Lithium-ion battery charger for a small portable device6.9 Application discussion6.10 Recap6.11 Problems 6.12 References CHAPTER 7 -- CAPACITORS AND RESISTORS 7.1 Introduction 7.2 Capacitors -- types and equivalent circuits » 7.2.1 Major types » 7.2.2 Equivalent circuit » 7.2.3 Impedance behavior » 7.2.4 Simple dielectric types and materials » 7.2.5 Electrolytics » 7.2.6 Double-layer capacitors 7.3 Effects of ESR 7.4 Effects of ESL7.5 Wire resistance » 7.5.1 Wire sizing» 7.5.2 Traces and busbar» 7.5.3 Temperature and frequency effects7.6 Resistors 7.7 Design examples» 7.7.1 Single-phase inverter energy» 7.7.2 Paralleling capacitors in a low-voltage dc-dc converter» 7.7.3 Resistance management in a heat lamp application7.8 Application discussion7.9 Recap 7.10 Problems 7.11 References CHAPTER 8 -- CONCEPTS OF MAGNETICS FOR POWER ELECTRONICS 8.1 Introduction 8.2 Maxwell's equations with magnetic approximations 8.3 Materials and properties 8.4 Magnetic circuits » 8.4.1 The circuit analogy » 8.4.2 Inductance » 8.4.3 Ideal and real transformers 8.5 The hysteresis loop and losses 8.6 Saturation as a design constraint » 8.6.1 Saturation limits » 8.6.2 General design considerations 8.7 Design examples » 8.7.1 Core materials and geometries » 8.7.2 Additional discussion of transformers» 8.7.3 Hybrid car boost inductor» 8.7.4 Building-integrated solar energy converter» 8.7.5 Isolated converter for small satellite application8.8 Application discussion8.9 Recap 8.10 Problems 8.11 References CHAPTER 9 -- POWER SEMICONDUCTORS IN CONVERTERS 9.1 Introduction 9.2 Switching device states 9.3 Static models 9.4 Switch energy losses and examples » 9.4.1 General analysis of losses » 9.4.2 Losses during commutation » 9.4.3 Examples 9.5 Simple heat transfer models for power semiconductors 9.6 The PN junction as a power device 9.7 PN junction diodes and alternatives 9.8 The thyristor family 9.9 Field-effect transistors 9.10 Insulated-gate bipolar transistors 9.11 Integrated gate-commutated thyristors and combination devices9.12 Impact of compound and wide bandgap semiconductors9.13 Snubbers » 9.13.1 Introduction » 9.13.2 Lossy turn-off snubbers » 9.13.3 Lossy turn-on snubbers » 9.13.4 Combined and lossless snubbers 9.14 Design examples » 9.14.1 Boost converter for disk drive» 9.14.2 Loss estimation for electric vehicle inverter» 9.14.3 Extreme performance devices9.15 Application discussion9.16 Recap 9.17 Problems 9.18 References CHAPTER 10 -- INTERFACING WITH POWER SEMICONDUCTORS 10.1 Introduction 10.2 Gate drives » 10.2.1 Overview » 10.2.2 Voltage-controlled gates » 10.2.3 Pulsed-current gates » 10.2.4 Gate turn-off thyristors 10.3 Isolation and high-side switching 10.4 P-channel applications and shoot-through 10.5 Sensors for power electronic switches » 10.5.1 Resistive sensing » 10.5.2 Integrating sensing functions with the gate drive » 10.5.3 Noncontact sensing10.6 Design examples» 10.6.1 Gate consideration on dc-dc-based battery charger» 10.6.2 Gate drive impedance requirements» 10.6.3 Hall sensor accuracy interpretation10.7 Application discussion10.8 Recap 10.9 Problems 10.10 References PART IV: CONTROL ASPECTSCHAPTER 11 -- OVERVIEW OF FEEDBACK CONTROL FOR CONVERTERS 11.1 Introduction 11.2 The regulation and control problem » 11.2.1 Introduction » 11.2.2 Defining the regulation problem » 11.2.3 The control problem 11.3 Review of feedback control principles » 11.3.1 Open-loop and closed-loop control » 11.3.2 Block diagrams » 11.3.3 System gain and Laplace transforms » 11.3.4 Transient response and frequency domain » 11.3.5 Stability 11.4 Converter models for feedback » 11.4.1 Basic converter dynamics » 11.4.2 Fast switching models » 11.4.3 Piecewise-linear models » 11.4.4 Discrete-time models 11.5 Voltage-mode and current-mode controls for dc-dc converters » 11.5.1 Voltage-mode control » 11.5.2 Current-mode control » 11.5.3 Sensorless current mode and flux controls» 11.5.4 Large-signal issues in voltage-mode and current-mode control 11.6 Comparator-based controls for rectifier systems 11.7 Proportional and proportional-integral control applications 11.8 Design examples» 11.8.1 Voltage mode control and performance» 11.8.2 Feedforward compensation» 11.8.3 Electric vehicle control setup11.9 Application discussion11.10 Recap 11.11 Problems 11.12 References CHAPTER 12 -- CONTROL MODELING AND DESIGN 12.1 Introduction 12.2 Averaging methods and models » 12.2.1 Formulation of averaged models » 12.2.2 Averaged circuit models 12.3 Small-signal analysis and linearization » 12.3.1 The need for linear models » 12.3.2 Obtaining linear models » 12.3.3 Generalizing the process 12.4 Control and control design based on linearization » 12.4.1 Transfer functions » 12.4.2 Control design - Introduction » 12.4.3 Compensation and filtering » 12.4.4 Compensated feedback examples » 12.4.5 Challenges for control design 12.5 Design examples» 12.5.1 Boost converter control example» 12.5.2 Buck converter design example with current-mode control» 12.5.3 Buck converter with voltage mode control12.6 Application discussion12.7 Recap 12.8 Problems 12.9 References PART V: ADVANCED TOPICSCHAPTER 13 -- AC-AC CONVERSION 13.1 Introduction 13.2 Ac regulators and integral cycle control» 13.2.1 SCR and triac-based ac regulators» 13.2.2 Integral cycle control13.3 Frequency matching conditions 13.4 Matrix converters » 13.4.1 Slow-switching frequency converters: The choice fin - fout » 13.4.2 Unrestricted frequency converters: The choice fswitch = fin + fout » 13.4.3 Unifying the direct switching methods: linear phase modulation 13.5 The cycloconverter 13.6 PWM ac-ac conversion 13.7 Dc link converters 13.8 Ac link converters 13.9 Design examples» 13.9.1 Heater control with triac ac regulator» 13.9.2 Matrix converter» 13.9.3 Link converter13.10 Application discussion13.11 Recap 13.12 Problems 13.13 References CHAPTER 14 -- RESONANCE IN CONVERTERS 14.1 Introduction 14.2 Review of resonance » 14.2.1 Characteristic equations » 14.2.2 Step function excitation » 14.2.3 Series resonance » 14.2.4 Parallel resonance 14.3 Soft switching techniques -- introduction » 14.3.1 Soft-switching principles » 14.3.2 Inverter configurations » 14.3.3 Parallel capacitor as a dc-dc soft switching element 14.4 Soft switching in dc-dc converters » 14.4.1 Description of quasi-resonance » 14.4.2 ZCS transistor action » 14.4.3 ZVS transistor action 14.5 Resonance used for control -- forward converters 14.6 Design examples» 14.6.1 Limitations of antiresonant filters» 14.6.2 Creating an ac link for a dc-dc converter» 14.6.3 Resonant boost converter for solar application14.7 Application discussion14.8 Recap 14.9 Problems 14.10 References CHAPTER 15 -- HYSTERESIS AND GEOMETRIC CONTROL FOR POWER CONVERTERS 15.1 Introduction 15.2 Hysteresis control » 15.2.1 Definition and basic behavior » 15.2.2 Hysteresis control in dc-dc converters » 15.2.3 Hysteresis power factor correction control » 15.2.4 Inverters » 15.2.5 Design approaches 15.3 Switching boundary control » 15.3.1 Behavior near a switching boundary » 15.3.2 Possible behavior » 15.3.3 Choosing a switching boundary 15.4 Frequency control in geometric methods 15.5 Design examples» 15.5.1 Designing hysteresis controllers» 15.5.2 Switching boundary control combination for battery charging management» 15.5.3 Boost converter with switching boundary control15.6 Application discussion15.7 Recap 15.8 Problems 15.9 References APPENDIX A. Trigonometric identities B. Unit systems C. Fourier seriesD. Three-phase circuitsE. Polyphase graph paperINDEX
Elements of Power Elements is a classic text, with modern examples that upgrade its relevance. It is an excellent first book on the subject, but also a reference that I use time and time again.