Del 86 - Wiley Series in Telecommunications and Signal Processing
Digital Communication over Fading Channels
Inbunden, Engelska, 2005
Av Marvin K. Simon, Mohamed-Slim Alouini, California Institute of Technology) Simon, Marvin K. (Jet Propulsion Laboratory, Minneapolis) Alouini, Mohamed-Slim (Department of Electrical and Computer Engineering of the University of Minnesota, Marvin K Simon
3 979 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.The four short years since Digital Communication over Fading Channels became an instant classic have seen a virtual explosion of significant new work on the subject, both by the authors and by numerous researchers around the world. Foremost among these is a great deal of progress in the area of transmit diversity and space-time coding and the associated multiple input-multiple output (MIMO) channel. This new edition gathers these and other results, previously scattered throughout numerous publications, into a single convenient and informative volume.Like its predecessor, this Second Edition discusses in detail coherent and noncoherent communication systems as well as a large variety of fading channel models typical of communication links found in the real world. Coverage includes single- and multichannel reception and, in the case of the latter, a large variety of diversity types. The moment generating function (MGF)-based approach for performance analysis, introduced by the authors in the first edition and referred to in literally hundreds of publications, still represents the backbone of the book's presentation. Important features of this new edition include:* An all-new, comprehensive chapter on transmit diversity, space-time coding, and the MIMO channel, focusing on performance evaluation* Coverage of new and improved diversity schemes* Performance analyses of previously known schemes in new and different fading scenarios* A new chapter on the outage probability of cellular mobile radio systems* A new chapter on the capacity of fading channels* And much moreDigital Communication over Fading Channels, Second Edition is an indispensable resource for graduate students, researchers investigating these systems, and practicing engineers responsible for evaluating their performance.
Produktinformation
- Utgivningsdatum2005-01-07
- Mått158 x 245 x 49 mm
- Vikt1 418 g
- FormatInbunden
- SpråkEngelska
- SerieWiley Series in Telecommunications and Signal Processing
- Antal sidor944
- Upplaga2
- FörlagJohn Wiley & Sons Inc
- ISBN9780471649533
Tillhör följande kategorier
MARVIN K. SIMON, PhD, is Principal Scientist at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena. MOHAMED-SLIM ALOUINI, PhD, is Associate Professor in the Department of Electrical and Computer Engineering of the University of Minnesota, Minneapolis.
- Preface xxvNomenclature xxxiPart 1 FundamentalsChapter 1 Introduction 31.1 System Performance Measures 41.1.1 Average Signal-to-Noise Ratio (SNR) 41.1.2 Outage Probability 51.1.3 Average Bit Error Probability (BEP) 61.1.4 Amount of Fading 121.1.5 Average Outage Duration 131.2 Conclusions 14References 14Chapter 2 Fading Channel Characterization and Modeling 172.1 Main Characteristics of Fading Channels 172.1.1 Envelope and Phase Fluctuations 172.1.2 Slow and Fast Fading 182.1.3 Frequency-Flat and Frequency-Selective Fading 182.2 Modeling of Flat-Fading Channels 192.2.1 Multipath Fading 202.2.1.1 Rayleigh 202.2.1.2 Nakagami-q (Hoyt) 222.2.1.3 Nakagami-n (Rice) 232.2.1.4 Nakagami-m 242.2.1.5 Weibull 252.2.1.6 Beckmann 282.2.1.7 Spherically-Invariant Random Process Model 302.2.2 Log-Normal Shadowing 322.2.3 Composite Multipath/Shadowing 332.2.3.1 Composite Gamma/Log-Normal Distribution 332.2.3.2 Suzuki Distribution 342.2.3.3 K Distribution 342.2.3.4 Rician Shadowed Distributions 362.2.4 Combined (Time-Shared) Shadowed/Unshadowed Fading 372.3 Modeling of Frequency-Selective Fading Channels 37References 39Chapter 3 Types of Communication 453.1 Ideal Coherent Detection 453.1.1 Multiple Amplitude-Shift-Keying (M-ASK) or Multiple Amplitude Modulation (M-AM) 473.1.2 Quadrature Amplitude-Shift-Keying (QASK) or Quadrature Amplitude Modulation (QAM) 483.1.3 M-ary Phase-Shift-Keying (M-PSK) 503.1.4 Differentially Encoded M-ary Phase-Shift-Keying (M-PSK) 533.1.4.1 π/4-QPSK 543.1.5 Offset QPSK (OQPSK) or Staggered QPSK (sqpsk) 553.1.6 M-ary Frequency-Shift-Keying (M-FSK) 563.1.7 Minimum-Shift-Keying (MSK) 583.2 Nonideal Coherent Detection 623.3 Noncoherent Detection 663.4 Partially Coherent Detection 683.4.1 Conventional Detection 683.4.1.1 One-Symbol Observation 683.4.1.2 Multiple-Symbol Observation 693.4.2 Differentially Coherent Detection 713.4.2.1 M-ary Differential Phase-Shift-Keying (M-DPSK) 713.4.2.2 Conventional Detection (Two-Symbol Observation) 733.4.2.3 Multiple-Symbol Detection 763.4.3 π/4-Differential QPSK (π/4-DQPSK) 78References 78Part 2 Mathematical ToolsChapter 4 Alternative Representations of Classical Functions 834.1 Gaussian Q-Function 844.1.1 One-Dimensional Case 844.1.2 Two-Dimensional Case 864.1.3 Other Forms for One- and Two-Dimensional Cases 884.1.4 Alternative Representations of Higher Powers of the Gaussian Q-Function 904.2 Marcum Q-Function 934.2.1 First-Order Marcum Q-Function 934.2.1.1 Upper and Lower Bounds 974.2.2 Generalized (mth-Order) Marcum Q-Function 1004.2.2.1 Upper and Lower Bounds 1054.3 The Nuttall Q-Function 1134.4 Other Functions 117References 119Appendix 4A. Derivation of Eq. (4.2) 120Chapter 5 Useful Expressions for Evaluating Average Error Probability Performance 1235.1 Integrals Involving the Gaussian Q-Function 1235.1.1 Rayleigh Fading Channel 1255.1.2 Nakagami-q (Hoyt) Fading Channel 1255.1.3 Nakagami-n (Rice) Fading Channel 1265.1.4 Nakagami-m Fading Channel 1265.1.5 Log-Normal Shadowing Channel 1285.1.6 Composite Log-Normal Shadowing/Nakagami-m Fading Channel 1285.2 Integrals Involving the Marcum Q-Function 1315.2.1 Rayleigh Fading Channel 1325.2.2 Nakagami-q (Hoyt) Fading Channel 1335.2.3 Nakagami-n (Rice) Fading Channel 1335.2.4 Nakagami-m Fading Channel 1335.2.5 Log-Normal Shadowing Channel 1335.2.6 Composite Log-Normal Shadowing/Nakagami-m Fading Channel 1345.2.7 Some Alternative Closed-Form Expressions 1355.3 Integrals Involving the Incomplete Gamma Function 1375.3.1 Rayleigh Fading Channel 1385.3.2 Nakagami-q (Hoyt) Fading Channel 1395.3.3 Nakagami-n (Rice) Fading Channel 1395.3.4 Nakagami-m Fading Channel 1405.3.5 Log-Normal Shadowing Channel 1405.3.6 Composite Log-Normal Shadowing/Nakagami-m Fading Channel 1405.4 Integrals Involving Other Functions 1415.4.1 The M -PSK Error Probability Integral 1415.4.1.1 Rayleigh Fading Channel 1425.4.1.2 Nakagami-m Fading Channel 1425.4.2 Arbitrary Two-Dimensional Signal Constellation Error Probability Integral 1425.4.3 Higher-Order Integer Powers of the Gaussian Q-Function 1445.4.3.1 Rayleigh Fading Channel 1445.4.3.2 Nakagami-m Fading Channel 1455.4.4 Integer Powers of M -PSK Error Probability Integrals 1455.4.4.1 Rayleigh Fading Channel 146References 148Appendix 5A. Evaluation of Definite Integrals Associated with Rayleigh and Nakagami-m Fading 1495a.1 Exact Closed-Form Results 1495a.2 Upper and Lower Bounds 165Chapter 6 New Representations of Some Probability Density and Cumulative Distribution Functions for Correlative Fading Applications 1696.1 Bivariate Rayleigh PDF and CDF 1706.2 PDF and CDF for Maximum of Two Rayleigh Random Variables 1756.3 PDF and CDF for Maximum of Two Nakagami-m Random Variables 1776.4 PDF and CDF for Maximum and Minimum of Two Log-Normal Random Variables 1806.4.1 The Maximum of Two Log-Normal Random Variables 1806.4.2 The Minimum of Two Log-Normal Random Variables 183References 185Part 3 Optimum Reception and Performance EvaluationChapter 7 Optimum Receivers for Fading Channels 1897.1 The Case of Known Amplitudes, Phases, and Delays—Coherent Detection 1917.2 The Case of Known Phases and Delays but Unknown Amplitudes 1957.2.1 Rayleigh Fading 1957.2.2 Nakagami-m Fading 1967.3 The Case of Known Amplitudes and Delays but Unknown Phases 1987.4 The Case of Known Delays but Unknown Amplitudes and Phases 1997.4.1 One-Symbol Observation—Noncoherent Detection 1997.4.1.1 Rayleigh Fading 2017.4.1.2 Nakagami-m Fading 2067.4.2 Two-Symbol Observation—Conventional Differentially Coherent Detection 2117.4.2.1 Rayleigh Fading 2147.4.2.2 Nakagami-m Fading 2177.4.3 N s -Symbol Observation—Multiple Differentially Coherent Detection 2177.4.3.1 Rayleigh Fading 2187.4.3.2 Nakagami-m Fading 2187.5 The Case of Unknown Amplitudes, Phases, and Delays 2197.5.1 One-Symbol Observation—Noncoherent Detection 2197.5.1.1 Rayleigh Fading 2207.5.1.2 Nakagami-m Fading 2217.5.2 Two-Symbol Observation—Conventional Differentially Coherent Detection 221References 222Chapter 8 Performance of Single-Channel Receivers 2238.1 Performance Over the AWGN Channel 2238.1.1 Ideal Coherent Detection 2248.1.1.1 Multiple Amplitude-Shift-Keying (M-ASK) or Multiple Amplitude Modulation (M-AM) 2248.1.1.2 Quadrature Amplitude-Shift- Keying (QASK) or Quadrature Amplitude Modulation (QAM) 2258.1.1.3 M-ary Phase-Shift-Keying (m-psk) 2288.1.1.4 Differentially Encoded M-ary Phase-Shift-Keying (M-PSK) and π/4-QPSK 2348.1.1.5 Offset QPSK (OQPSK) or Staggered QPSK (SQPSK) 2358.1.1.6 M-ary Frequency-Shift-Keying (m-fsk) 2368.1.1.7 Minimum-Shift-Keying (MSK) 2378.1.2 Nonideal Coherent Detection 2378.1.3 Noncoherent Detection 2428.1.4 Partially Coherent Detection 2428.1.4.1 Conventional Detection (One-Symbol Observation) 2428.1.4.2 Multiple-Symbol Detection 2448.1.5 Differentially Coherent Detection 2458.1.5.1 M-ary Differential Phase-Shift-Keying (M-DPSK) 2458.1.5.2 M-DPSK with Multiple-Symbol Detection 2498.1.5.3 π/4-Differential QPSK (π/4-DQPSK) 2508.1.6 Generic Results for Binary Signaling 2518.2 Performance Over Fading Channels 2528.2.1 Ideal Coherent Detection 2528.2.1.1 Multiple Amplitude-Shift-Keying (M-ASK) or Multiple Amplitude Modulation (M-AM) 2538.2.1.2 Quadrature Amplitude-Shift- Keying (QASK) or Quadrature Amplitude Modulation (QAM) 2548.2.1.3 M-ary Phase-Shift-Keying (m-psk) 2568.2.1.4 Differentially Encoded M-ary Phase-Shift-Keying (M-PSK) and π/4-QPSK 2588.2.1.5 Offset QPSK (OQPSK) or Staggered QPSK (SQPSK) 2628.2.1.6 M-ary Frequency-Shift-Keying (m-fsk) 2628.2.1.7 Minimum-Shift-Keying (MSK) 2678.2.2 Nonideal Coherent Detection 2678.2.2.1 Simplified Noisy Reference Loss Evaluation 2738.2.3 Noncoherent Detection 2818.2.4 Partially Coherent Detection 2828.2.5 Differentially Coherent Detection 2848.2.5.1 M-ary Differential Phase-Shift- Keying (M-DPSK)—Slow Fading 2858.2.5.2 M-ary Differential Phase-Shift- Keying (M-DPSK)—Fast Fading 2908.2.5.3 π/4-Differential QPSK (π/4-DQPSK) 2948.2.6 Performance in the Presence of Imperfect Channel Estimation 2948.2.6.1 Signal Model and Symbol Error Probability Evaluation for Rayleigh Fading 2958.2.6.2 Special Cases 297References 301Appendix 8A. Stein’s Unified Analysis of the Error Probability Performance of Certain Communication Systems 304Chapter 9 Performance of Multichannel Receivers 3119.1 Diversity Combining 3129.1.1 Diversity Concept 3129.1.2 Mathematical Modeling 3129.1.3 Brief Survey of Diversity Combining Techniques 3139.1.3.1 Pure Combining Techniques 3139.1.3.2 Hybrid Combining Techniques 3159.1.4 Complexity–Performance Tradeoffs 3169.2 Maximal-Ratio Combining (MRC) 3169.2.1 Receiver Structure 3179.2.2 PDF-Based Approach 3199.2.3 MGF-Based Approach 3209.2.3.1 Average Bit Error Rate of Binary Signals 3209.2.3.2 Average Symbol Error Rate of M-PSK Signals 3229.2.3.3 Average Symbol Error Rate of M-AM Signals 3239.2.3.4 Average Symbol Error Rate of Square M-QAM Signals 3249.2.4 Bounds and Asymptotic SER Expressions 3269.3 Coherent Equal Gain Combining 3319.3.1 Receiver Structure 3319.3.2 Average Output SNR 3329.3.3 Exact Error Rate Analysis 3339.3.3.1 Binary Signals 3339.3.3.2 Extension to M-PSK Signals 3399.3.4 Approximate Error Rate Analysis 3409.3.5 Asymptotic Error Rate Analysis 3429.4 Noncoherent and Differentially Coherent Equal Gain Combining 3429.4.1 DPSK, DQPSK, and BFSK Performance (Exact and with Bounds) 3439.4.1.1 Receiver Structures 3439.4.1.2 Exact Analysis of Average Bit Error Probability 3469.4.1.3 Bounds on Average Bit Error Probability 3529.4.2 M-ary Orthogonal FSK 3539.4.2.1 Exact Analysis of Average Bit Error Probability 3569.4.2.2 Numerical Examples 3649.4.3 Multiple-Symbol Differential Detection with Diversity Combining 3679.4.3.1 Decision Metrics 3679.4.3.2 Average Bit Error Rate Performance 3689.4.3.3 Asymptotic (Large N s) Behavior 3719.4.3.4 Numerical Results 3729.5 Optimum Diversity Combining of Noncoherent Fsk 3759.5.1 Comparison with the Noncoherent Equal Gain Combining Receiver 3779.5.2 Extension to the M-ary Orthogonal FSK Case 3789.6 Outage Probability Performance 3799.6.1 MRC and Noncoherent EGC 3799.6.2 Coherent EGC 3809.6.3 Numerical Examples 3819.7 Impact of Fading Correlation 3899.7.1 Model A: Two Correlated Branches with Nonidentical Fading 3909.7.1.1 Pdf 3909.7.1.2 Mgf 3929.7.2 Model B: D Identically Distributed Branches with Constant Correlation 3929.7.2.1 Pdf 3939.7.2.2 Mgf 3939.7.3 Model C: D Identically Distributed Branches with Exponential Correlation 3949.7.3.1 Pdf 3949.7.3.2 Mgf 3949.7.4 Model D: D Nonidentically Distributed Branches with Arbitrary Correlation 3959.7.4.1 Mgf 3959.7.4.2 Special Cases of Interest 3969.7.4.3 Proof that Correlation Degrades Performance 3979.7.5 Numerical Examples 3999.8 Selection Combining 4049.8.1 MGF of Output SNR 4059.8.2 Average Output SNR 4069.8.3 Outage Probability 4099.8.3.1 Analysis 4099.8.3.2 Numerical Example 4109.8.4 Average Probability of Error 4119.8.4.1 BDPSK and Noncoherent BFSK 4119.8.4.2 Coherent BPSK and BFSK 4139.8.4.3 Numerical Example 4159.9 Switched Diversity 4179.9.1 Dual-Branch Switch-and-Stay Combining 4199.9.1.1 Performance of SSC over Independent Identically Distributed Branches 4199.9.1.2 Effect of Branch Unbalance 4339.9.1.3 Effect of Branch Correlation 4369.9.2 Multibranch Switch-and-Examine Combining 4399.9.2.1 Classical Multibranch SEC 4409.9.2.2 Multibranch SEC with Post-selection 4439.9.2.3 Scan-and-Wait Combining 4469.10 Performance in the Presence of Outdated or Imperfect Channel Estimates 4569.10.1 Maximal-Ratio Combining 4579.10.2 Noncoherent EGC over Rician Fast Fading 4589.10.3 Selection Combining 4619.10.4 Switched Diversity 4629.10.4.1 SSC Output Statistics 4629.10.4.2 Average SNR 4639.10.4.3 Average Probability of Error 4639.10.5 Numerical Results 4649.11 Combining in Diversity-Rich Environments 4669.11.1 Two-Dimensional Diversity Schemes 4669.11.1.1 Performance Analysis 4689.11.1.2 Numerical Examples 4699.11.2 Generalized Selection Combining 4699.11.2.1 I.I.D. Rayleigh Case 4729.11.2.2 Non-I.I.D. Rayleigh Case 4929.11.2.3 I.I.D. Nakagami-m Case 4979.11.2.4 Partial-MGF Approach 5029.11.2.5 I.I.D. Weibull Case 5109.11.3 Generalized Selection Combining with Threshold Test per Branch (T-GSC) 5129.11.3.1 Average Error Probability Performance 5159.11.3.2 Outage Probability Performance 5209.11.3.3 Performance Comparisons 5249.11.4 Generalized Switched Diversity (GSSC) 5319.11.4.1 GSSC Output Statistics 5319.11.4.2 Average Probability of Error 5329.11.5 Generalized Selection Combining Based on the Log-Likelihood Ratio 5329.11.5.1 Optimum (LLR-Based) GSC for Equiprobable BPSK 5339.11.5.2 Envelope-Based GSC 5369.11.5.3 Optimum GSC for Noncoherently Detected Equiprobable Orthogonal Bfsk 5369.12 Post-detection Combining 5379.12.1 System and Channel Models 5379.12.1.1 Overall System Description 5379.12.1.2 Channel Model 5379.12.1.3 Receiver 5399.12.2 Post-detection Switched Combining Operation 5399.12.2.1 Switching Strategy and Mechanism 5399.12.2.2 Switching Threshold 5409.12.3 Average BER Analysis 5409.12.3.1 Identically Distributed Branches 5429.12.3.2 Nonidentically Distributed Branches 5429.12.4 Rayleigh Fading 5439.12.4.1 Identically Distributed Branches 5449.12.4.2 Nonidentically Distributed Branches 5479.12.5 Impact of the Severity of Fading 5489.12.5.1 Average BER 5509.12.5.2 Numerical Examples and Discussion 5529.12.6 Extension to Orthogonal M-FSK 5529.12.6.1 System Model and Switching Operation 5529.12.6.2 Average Probability of Error 5559.12.6.3 Numerical Examples 5629.13 Performance of Dual-Branch Diversity Combining Schemes over Log-Normal Channels 5669.13.1 System and Channel Models 5669.13.2 Maximal-Ratio Combining 5689.13.2.1 Moments of the Output SNR 5689.13.2.2 Outage Probability 5709.13.2.3 Extension to Equal Gain Combining 5719.13.3 Selection Combining 5719.13.3.1 Moments of the Output SNR 5729.13.3.2 Outage Probability 5759.13.4 Switched Combining 5759.13.4.1 Moments of the Output SNR 5769.13.4.2 Outage Probability 5819.14 Average Outage Duration 5849.14.1 System and Channel Models 5859.14.1.1 Fading Channel Models 5859.14.1.2 GSC Mode of Operation 5859.14.2 Average Outage Duration and Average Level Crossing Rate 5869.14.2.1 Problem Formulation 5869.14.2.2 General Formula for the Average LCR of GSC 5869.14.3 I.I.D. Rayleigh Fading 5899.14.3.1 Generic Expressions for GSC 5899.14.3.2 Special Cases: SC and MRC 5909.14.4 Numerical Examples 5919.15 Multiple-Input/Multiple-Output (MIMO) Antenna Diversity Systems 5949.15.1 System, Channel, and Signal Models 5949.15.2 Optimum Weight Vectors and Output SNR 5959.15.3 Distributions of the Largest Eigenvalue of Noncentral Complex Wishart Matrices 5969.15.3.1 CDF of S 5969.15.3.2 PDF of S 5989.15.3.3 PDF of Output SNR and Outage Probability 5999.15.3.4 Special Cases 6009.15.3.5 Numerical Results and Discussion 601References 604Appendix 9A. Alternative Forms of the Bit Error Probability for a Decision Statistic that Is a Quadratic Form of Complex Gaussian Random Variables 619Appendix 9B. Simple Numerical Techniques for Inversion of Laplace Transform of Cumulative Distribution Functions 6259b.1 Euler Summation-Based Technique 6259b.2 Gauss–Chebyshev Quadrature-Based Technique 626Appendix 9C. The Relation between the Power Correlation Coefficient of Correlated Rician Random Variables and the Correlation Coefficient of Their Underlying Complex Gaussian Random Variables 627Appendix 9D. Proof of Theorem 9.1 631Appendix 9E. Direct Proof of Eq. (9.438) 632Appendix 9F. Special Definite Integrals 634Part 4 Multiuser Communication SystemsChapter 10 Outage Performance of Multiuser Communication Systems 63910.1 Outage Probability in Interference-Limited Systems 64010.1.1 A Probability Related to the CDF of the Difference of Two Chi-Square Variates with Different Degrees of Freedom 64010.1.2 Fading and System Models 64310.1.2.1 Channel Fading Models 64310.1.2.2 Desired and Interference Signals Model 64410.1.3 A Generic Formula for the Outage Probability 64410.1.3.1 Nakagami/Nakagami Scenario 64510.1.3.2 Rice/Rice Scenario 64610.1.3.3 Rice/Nakagami Scenario 64710.1.3.4 Nakagami/Rice Scenario 64710.2 Outage Probability with a Minimum Desired Signal Power Constraint 64810.2.1 Models and Problem Formulation 64810.2.1.1 Fading and System Models 64810.2.1.2 Outage Probability Definition 64810.2.2 Rice/I.I.D. Nakagami Scenario 64910.2.2.1 Rice/I.I.D. Rayleigh Scenario 64910.2.2.2 Extension to Rice/I.I.D. Nakagami Scenario 65210.2.2.3 Numerical Examples 65210.2.3 Nakagami/I.I.D. Rice Scenario 65410.2.3.1 Rayleigh/I.I.D. Rice Scenario 65410.2.3.2 Extension to Nakagami/I.I.D. Rice Scenario 65610.2.3.3 Numerical Examples 65710.3 Outage Probability with Dual-Branch SC and SSC Diversity 65910.3.1 Fading and System Models 66110.3.2 Outage Performance with Minimum Signal Power Constraint 66110.3.2.1 Selection Combining 66210.3.2.2 Switch-and-Stay Combining 66310.3.2.3 Numerical Examples 66410.4 Outage Rate and Average Outage Duration of Multiuser Communication Systems 667References 671Appendix 10A. A Probability Related to the CDF of the Difference of Two Chi-Square Variates with Different Degrees of Freedom 674Appendix 10B. Outage Probability in the Nakagami/Nakagami Interference-Limited Scenario 678Chapter 11 Optimum Combining—a Diversity Technique for Communication over Fading Channels in the Presence of Interference 68111.1 Performance of Diversity Combining Receivers 68211.1.1 Single Interferer; Independent, Identically Distributed Fading 68211.1.1.1 Rayleigh Fading—Exact Evaluation of Average Bit Error Probability 68611.1.1.2 Rayleigh Fading—Approximate Evaluation of Average Bit Error Probability 68911.1.1.3 Extension to Other Modulations 69211.1.1.4 Rician Fading—Evaluation of Average Bit Error Probability 69311.1.1.5 Nakagami-m Fading—Evaluation of Average Bit Error Probability 69511.1.2 Multiple Equal Power Interferers; Independent, Identically Distributed Fading 69711.1.2.1 Number of Interferers Less than Number of Array Elements 70011.1.2.2 Number of Interferers Equal to or Greater than Number of Array Elements 70611.1.3 Comparison with Results for MRC in the Presence of Interference 71011.1.4 Multiple Arbitrary Power Interferers; Independent, Identically Distributed Fading 71511.1.4.1 Average SEP of M-PSK 71511.1.4.2 Numerical Results 71611.1.5 Multiple-Symbol Differential Detection in the Presence of Interference 71811.1.5.1 Decision Metric 71811.1.5.2 Average BEP 71811.2 Optimum Combining with Multiple Transmit and Receive Antennas 72111.2.1 System, Channel, and Signals Models 72111.2.2 Optimum Weight Vectors and Output SIR 72311.2.3 PDF of Output SIR and Outage Probability 72311.2.3.1 PDF of Output SIR 72411.2.3.2 Outage Probability 72411.2.3.3 Special Case When L t = 172511.2.4 Key Observations 72611.2.4.1 Distribution of Antenna Elements 72611.2.4.2 Effects of Correlation between Receiver Antenna Pairs 72611.2.5 Numerical Examples 727References 729Appendix 11A. Distributions of the Largest Eigenvalue of Certain Quadratic Forms in Complex Gaussian Vectors 73211A.1 General Result 73211A.2 Special Case 733Chapter 12 Direct-Sequence Code-Division Multiple Access (ds-cdma) 73512.1 Single-Carrier DS-CDMA Systems 73612.1.1 System and Channel Models 73612.1.1.1 Transmitted Signal 73612.1.1.2 Channel Model 73712.1.1.3 Receiver 73812.1.2 Performance Analysis 73912.1.2.1 General Case 74012.1.2.2 Application to Nakagami-m Fading Channels 74012.2 Multicarrier DS-CDMA Systems 74112.2.1 System and Channel Models 74212.2.1.1 Transmitter 74212.2.1.2 Channel 74312.2.1.3 Receiver 74312.2.1.4 Notations 74412.2.2 Performance Analysis 74512.2.2.1 Conditional SNR 74512.2.2.2 Average BER 74912.2.3 Numerical Examples 750References 754Part 5 Coded Communication SystemsChapter 13 Coded Communication over Fading Channels 75913.1 Coherent Detection 76113.1.1 System Model 76113.1.2 Evaluation of Pairwise Error Probability 76313.1.2.1 Known Channel State Information 76413.1.2.2 Unknown Channel State Information 76813.1.3 Transfer Function Bound on Average Bit Error Probability 77213.1.3.1 Known Channel State Information 77413.1.3.2 Unknown Channel State Information 77413.1.4 An Alternative Formulation of the Transfer Function Bound 77413.1.5 An Example 77513.2 Differentially Coherent Detection 78113.2.1 System Model 78113.2.2 Performance Evaluation 78313.2.2.1 Unknown Channel State Information 78313.2.2.2 Known Channel State Information 78513.2.3 An Example 78513.3 Numerical Results—Comparison between the True Upper Bounds and Union–Chernoff Bounds 787References 792Appendix 13A. Evaluation of a Moment Generating Function Associated with Differential Detection ofM-PSK Sequences 793Chapter 14 Multichannel Transmission—Transmit Diversity and Space-Time Coding 79714.1 A Historical Perspective 79914.2 Transmit versus Receive Diversity—Basic Concepts 80014.3 Alamouti’s Diversity Technique—a Simple Transmit Diversity Scheme Using Two Transmit Antennas 80314.4 Generalization of Alamouti’s Diversity Technique to Orthogonal Space-Time Block Code Designs 80914.5 Alamouti’s Diversity Technique Combined with Multidimensional Trellis-Coded Modulation 81214.5.1 Evaluation of Pairwise Error Probability Performance on Fast Rician Fading Channels 81414.5.2 Evaluation of Pairwise Error Probability Performance on Slow Rician Fading Channels 81714.6 Space-Time Trellis-Coded Modulation 81814.6.1 Evaluation of Pairwise Error Probability Performance on Fast Rician Fading Channels 82014.6.2 Evaluation of Pairwise Error Probability Performance on Slow Rician Fading Channels 82114.6.3 An Example 82414.6.4 Approximate Evaluation of Average Bit Error Probability 82714.6.4.1 Fast-Fading Channel Model 82714.6.4.2 Slow-Fading Channel Model 82914.6.5 Evaluation of the Transfer Function Upper Bound on Average Bit Error Probability 83114.6.5.1 Fast-Fading Channel Model 83114.6.5.2 Slow-Fading Channel Model 83314.7 Other Combinations of Space-Time Block Codes and Space-Time Trellis Codes 83314.7.1 Super-Orthogonal Space-Time Trellis Codes 83414.7.1.1 The Parameterized Class of Space-Time Block Codes and System Model 83414.7.1.2 Evaluation of the Pairwise Error Probability 83614.7.1.3 Extension of the Results to Super-Orthogonal Codes with More than Two Transmit Antennas 84414.7.1.4 Approximate Evaluation of Average Bit Error Probability 84514.7.1.5 Evaluation of the Transfer Function Upper Bound on the Average Bit Error Probability 84614.7.1.6 Numerical Results 84814.7.2 Super-Quasi-Orthogonal Space-Time Trellis Codes 85014.7.2.1 Signal Model 85014.7.2.2 Evaluation of Pairwise Error Probability 85214.7.2.3 Examples 85314.7.2.4 Numerical Results 85714.8 Disclaimer 858References 859Chapter 15 Capacity of Fading Channels 86315.1 Channel and System Model 86315.2 Optimum Simultaneous Power and Rate Adaptation 86515.2.1 No Diversity 86515.2.2 Maximal-Ratio Combining 86615.3 Optimum Rate Adaptation with Constant Transmit Power 86715.3.1 No Diversity 86815.3.2 Maximal-Ratio Combining 86915.4 Channel Inversion with Fixed Rate 86915.4.1 No Diversity 87015.4.2 Maximal-Ratio Combining 87015.5 Numerical Examples 87115.6 Capacity of MIMO Fading Channels 876References 877Appendix 15A. Evaluation of J n (µ) 878Appendix 15B. Evaluation of I n (µ) 880Index 883