Del 571

Young Measures on Topological Spaces

With Applications in Control Theory and Probability Theory

Inbunden, Engelska, 2004

Av Charles Castaing, Paul Raynaud de Fitte, Michel Valadier

719 kr

Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Finns i fler format (1)


Classicalexamples of moreand more oscillatingreal-valued functions on a domain N ?of R are the functions u (x)=sin(nx)with x=(x ,...,x ) or the so-called n 1 1 n n+1 Rademacherfunctionson]0,1[,u (x)=r (x) = sgn(sin(2 ?x))(seelater3.1.4). n n They may appear as the gradients?v of minimizing sequences (v ) in some n n n?N variationalproblems. Intheseexamples,thefunctionu convergesinsomesenseto n ameasure on ? xR, called Young measure. In Functional Analysis formulation, this is the narrow convergence to of the image of the Lebesgue measure on ? by ? ? (?,u (?)). In the disintegrated form ( ) ,the parametrized measure n ? ??? ? captures the possible scattering of the u around ?. n Curiously if (X ) is a sequence of random variables deriving from indep- n n?N dent ones, the n-th one may appear more and more far from the k ?rst ones as 2 if it was oscillating (think of orthonormal vectors in L which converge weakly to 0). More precisely when the laws L(X ) narrowly converge to some probability n measure , it often happens that for any k and any A in the algebra generated by X ,...,X , the conditional law L(X|A) still converges to (see Chapter 9) 1 k n which means 1 ??? C (R) ?(X (?))dP(?)???d b n P(A) A R or equivalently, ? denoting the image of P by ? ? (?,X (?)), n X n (1l ??)d? ?? (1l ??)d[P? ].

Produktinformation

  • Utgivningsdatum2004-07-14
  • Mått210 x 279 x 30 mm
  • Vikt624 g
  • FormatInbunden
  • SpråkEngelska
  • SerieMathematics and Its Applications
  • Antal sidor320
  • Upplaga2004
  • FörlagSpringer-Verlag New York Inc.
  • ISBN9781402019630