Support Vector Machines for Pattern Classification
Inbunden, Engelska, 2010
Av Shigeo Abe
2 119 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Finns i fler format (1)
A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.
Produktinformation
- Utgivningsdatum2010-03-29
- Mått155 x 235 x 38 mm
- Vikt870 g
- SpråkEngelska
- SerieAdvances in Computer Vision and Pattern Recognition
- Antal sidor473
- Upplaga2
- FörlagSpringer London Ltd
- EAN9781849960977