Support Vector Machines for Pattern Classification

Häftad, Engelska, 2012

Av Shigeo Abe

2 109 kr

Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Finns i fler format (1)


A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.

Produktinformation

  • Utgivningsdatum2012-05-04
  • Mått155 x 235 x 27 mm
  • Vikt739 g
  • FormatHäftad
  • SpråkEngelska
  • SerieAdvances in Computer Vision and Pattern Recognition
  • Antal sidor473
  • Upplaga2
  • FörlagSpringer London Ltd
  • ISBN9781447125488