Power Electronics Semiconductor Devices
Inbunden, Engelska, 2009
Av Perret, Robert Perret
3 579 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.This book relates the recent developments in several key electrical engineering R&D labs, concentrating on power electronics switches and their use. The first sections deal with key power electronics technologies, MOSFETs and IGBTs, including series and parallel associations. The next section examines silicon carbide and its potentiality for power electronics applications and its present limitations. Then, a dedicated section presents the capacitors, key passive components in power electronics, followed by a modeling method allowing the stray inductances computation, necessary for the precise simulation of switching waveforms. Thermal behavior associated with power switches follows, and the last part proposes some interesting prospectives associated to Power Electronics integration.
Produktinformation
- Utgivningsdatum2009-03-06
- Mått164 x 239 x 37 mm
- Vikt993 g
- FormatInbunden
- SpråkEngelska
- Antal sidor576
- FörlagISTE Ltd and John Wiley & Sons Inc
- ISBN9781848210646
Tillhör följande kategorier
Robert PERRET, Grenoble INP, France, is the editor of Power Electronics Semiconductor Devices, published by Wiley.
- Preface xiChapter 1. Power MOSFET Transistors 1Pierre ALOÏSI1.1. Introduction 11.2. Power MOSFET technologies 51.2.1. Diffusion process 51.2.2. Physical and structural MOS parameters 71.2.3. Permanent sustaining current 201.3. Mechanism of power MOSFET operation 231.3.1. Basic principle 231.3.2. Electron injection 231.3.3. Static operation 251.3.4. Dynamic operation 301.4. Power MOSFET main characteristics 341.5. Switching cycle with an inductive load 361.5.1. Switch-on study 361.5.2. Switch-off study 381.6. Characteristic variations due to MOSFET temperature changes 441.7. Over-constrained operations 461.7.1. Overvoltage on the gate 461.7.2. Over-current 471.7.3. Avalanche sustaining 491.7.4. Use of the body diode 501.7.5. Safe operating areas 511.8. Future developments of the power MOSFET 531.9. References 55Chapter 2. Insulated Gate Bipolar Transistors 57Pierre ALOÏSI2.1. Introduction 572.2. IGBT technology 582.2.1. IGBT structure 582.2.2. Voltage and current characteristics 602.3. Operation technique 632.3.1. Basic principle 632.3.2. Continuous operation 642.3.3. Dynamic operation 712.4. Main IGBT characteristics 742.5 One cycle of hard switching on the inductive load 752.5.1. Switch-on study 762.5.2. Switch-off study 782.6 Soft switching study 862.6.1. Soft switching switch-on: ZVS (Zero Voltage Switching) 862.6.2. Soft switching switch-off: ZCS (Zero Current Switching) 882.7. Temperature operation 942.8. Over-constraint operations 982.8.1. Overvoltage 982.8.2. Over-current 992.8.3. Manufacturer’s specified safe operating areas 1132.9. Future of IGBT 1162.9.1. Silicon evolution 1162.9.2. Saturation voltage improvements 1172.10. IGBT and MOSFET drives and protections 1192.10.1. Gate drive design 1192.10.2. Gate drive circuits 1222.10.3. MOSFET and IGBT protections 1282.11. References 130Chapter 3. Series and Parallel Connections of MOS and IGBT 133Daniel CHATROUX , Dominique LAFORE and Jean-Luc SCHANEN3.1. Introduction 1333.2. Kinds of associations 1343.2.1. Increase of power 1343.2.2. Increasing performance 1353.3. The study of associations: operation and parameter influence on imbalances in series and parallel 1353.3.1. Analysis and characteristics for the study of associations 1353.3.2. Static operation 1373.3.3. Dynamic operation: commutation 1403.3.4. Transient operation 1493.3.5. Technological parameters that influence imbalances 1513.4. Solutions for design 1523.4.1. Parallel association 1523.4.2. Series associations 1613.4.3. Matrix connection of components 1793.5. References 182Chapter 4. Silicon Carbide Applications in Power Electronics 185Marie-Laure LOCATELLI and Dominique PLANSON4.1. Introduction 1854.2. Physical properties of silicon carbide 1864.2.1. Structural features 1864.2.2. Chemical, mechanical and thermal features 1894.2.3. Electronic and thermal features 1884.2.4. Other “candidates” as semiconductors of power 1954.3. State of the art technology for silicon carbide power components 2964.3.1. Substrates and thin layers of SiC 2964.3.2. Technological steps for achieving power components 2034.4. Applications of silicon carbide in power electronics 2164.4.1. SiC components for high frequency power supplies 2164.4.2. SiC components for switching systems under high voltage and high power 2334.4.3. High energy SiC components for series protection systems 2494.5. Conclusion 2524.6. Acknowledgments 2554.7. References 255Chapter 5. Capacitors for Power Electronics 267Abderrahmane BÉROUAL, Sophie GUILLEMET-FRITSCH and Thierry LEBEY5.1. Introduction 2675.2. The various components of the capacitor – description 2685.2.1. The dielectric material 2695.2.2. The armatures 2695.2.3. Technology of capacitors 2705.2.4. Connections 2715.3. Stresses in a capacitor 2725.3.1. Stresses related to the voltage magnitude 2725.3.2. Losses and drift of capacity 2735.3.3. Thermal stresses 2745.3.4. Electromechanical stresses 2755.3.5. Electromagnetic constraints 2765.4. Film capacitors 2765.4.1. Armatures 2765.4.2. Dielectric materials 2795.5. Impregnated capacitors 2795.6. Electrolytic capacitors 2805.7. Modeling and use of capacitors 2825.7.1. Limitations of capacitors 2835.7.2. Application of capacitors 2905.8. Ceramic capacitors 2935.8.1. Definitions 2945.8.2. Methods of producing ceramics 2965.8.3. Technologies of ceramic capacitors 2995.8.4. The different types of components 3025.8.5. Summary – conclusion 3105.9. Specific applications of ceramic capacitors in power electronics 3115.9.1. Snubber circuits 3115.9.2. In ZVS 3125.9.3. Series resonant converters 3135.10. R&D perspectives on capacitors for power electronics 3135.10.1. Film capacitors 3135.10.2. Electrolytic capacitors 3145.10.3. Ceramic capacitors 3145.11. References 315Chapter 6. Modeling Connections 317Edith CLAVEL, François COSTA, Arnaud GUENA, Cyrille GAUTIER, James ROUDET and Jean-Luc SCHANEN6.1. Introduction 3176.1.1. Importance of interconnections in power electronics 3176.1.2. The constraints imposed on the interconnections 3186.1.3. The various interconnections used in power electronics 3196.1.4. The need to model the interconnections 3206.2. The method of modeling 3216.2.1. The required qualities 3216.2.2. Which method of modeling? 3226.2.3. Brief description of the PEEC method 3246.3. The printed circuit board 3296.3.1. Introduction 3306.3.2. Thin wire method 3306.3.3. Expressions of per unit length parameters 3326.3.4. Representation by multi-poles, “circuit” modeling 3406.3.5. Topological analysis of printed circuit 3466.3.6. Experimental applications 3496.3.7. Conclusion on the simulation of printed circuit 3536.4. Towards a better understanding of massive interconnections 3536.4.1. General considerations 3536.4.2 The printed circuit board or the isolated metal substrate (IMS) 3596.4.3. Massive conductors 3616.4.4. Bus bars 3616.5. Experimental validations 3626.6. Using these models 3666.6.1. Determination of equivalent impedance 3666.6.2. Other applications: towards thermal analysis and electrodynamic efforts computation 3906.7. Conclusion 3996.8. References 400Chapter 7. Commutation Cell 403James ROUDET and Jean-Luc SCHANEN7.1. Introduction: a well-defined commutation cell 4037.2. Some more or less coupled physical phenomena 4047.3. The players in switching (respective roles of the component and its environment) 4107.3.1. Closure of the MOSFET 4117.3.2. Opening of the MOSFET 4247.3.3. Summary 4317.4. References 432Chapter 8. Power Electronics and Thermal Management 433Corinne PERRET and Robert PERRET8.1. Introduction: the need for efficient cooling of electronic modules 4338.2. Current power components 4368.2.1. Silicon chip: the active component 4368.2.2. Distribution of losses in the silicon chip 4428.3. Power electronic modules 4428.3.1. Main features of the power electronic modules 4428.3.2. The main heat equations in the module 4448.3.3. Cooling currently used for components of power electronics 4468.3.4. Towards an “all silicon” approach 4488.3.5. Conclusion 4518.4. Laws of thermal and fluid exchange for forced convection with single phase operation 4528.4.1. Notion of thermal resistance 4528.4.2. Laws of convective exchanges from a thermal and hydraulic point of view: the four numbers of fluids physics 4568.5. Modeling heat exchanges 4618.5.1. Semi-analytical approach 4618.5.2. The numerical models 4728.5.3. Taking into account electro-thermal coupling 4788.6. Experimental validation and results 4868.6.1. Infrared thermography 4868.6.2. Indirect measurement of temperature from a thermo-sensible parameter 4908.7. Conclusion 4938.8. References 494Chapter 9. Towards Integrated Power Electronics 497Patrick AUSTIN, Marie BREIL and Jean-Louis SANCHEZ9.1. The integration 4979.1.1. Introduction 4979.1.2. The different types of monolithic integration 4999.2. Examples and development of functional integration 5079.2.1. The MOS thyristor structures 5079.2.2. Evolution towards the integration of specific functions 5149.3. Integration of functions within the power component 5209.3.1. Monolithic integration of electrical functions 5209.3.2. Extensions of integration 5309.4. Design method and technologies 5359.4.1 Evolution of methods and design tools for functional integration 5359.4.2. The technologies 5379.5. Conclusion 5419.6. References 542List of Authors 547Index 551