Physics for Radiation Protection
Inbunden, Engelska, 2013
Av James E. Martin, James E. (University of Michigan) Martin
2 169 kr
Produktinformation
- Utgivningsdatum2013-03-13
- Mått170 x 246 x 38 mm
- Vikt1 542 g
- FormatInbunden
- SpråkEngelska
- Antal sidor670
- Upplaga3
- FörlagWiley-VCH Verlag GmbH
- ISBN9783527411764
Tillhör följande kategorier
JAMES E. MARTIN, PhD, CHP, is Associate Professor (Emeritus) at the University of Michigan where he has done research and teaching on environmental and public health aspects of radiation with an emphasis on radiation physics since 1982. He also served 25 years (1957-81) with the U.S. Public Health Service and Environmental Protection Agency, doing environmental assessments of radioactive materials including protection standards. His doctorate is in Radiological Health. Professor Martin is certified in Health Physics by the American Board of Health Physics and has published over 40 peer-reviewed papers and numerous articles and reports. Advisory Committee memberships include two National Academy of Science committees, the Science Advisory Board of the Environmental Protection Agency, and the U.S. Department of Energy.
- Preface xvii1 Structure of Atoms 11.1 Atom Constituents 21.2 Structure, Identity, and Stability of Atoms 51.3 Chart of the Nuclides 61.4 Nuclear Models 8Problems – Chapter 1 92 Atoms and Energy 112.1 Atom Measures 122.2 Energy Concepts for Atoms 142.2.1 Mass-energy 152.2.2 Binding Energy of Nuclei 162.3 Summary 18Other Suggested Sources 18Problems – Chapter 2 193 Radioactive Transformation 213.1 Processes of Radioactive Transformation 213.1.1 Transformation of Neutron-rich Radioactive Nuclei 233.1.2 Double Beta (ββ) Transformation 273.1.3 Transformation of Proton-rich Nuclei 273.1.4 Positron Emission 293.1.5 Average Energy of Negatron and Positron Emitters 323.1.6 Electron Capture (EC) 333.1.7 Radioactive Transformation of Heavy Nuclei by Alpha Particle Emission 353.1.8 Theory of Alpha Particle Transformation 383.1.9 Transuranic (TRU) Radionuclides 403.1.10 Gamma Emission 413.1.11 Internal Transition (Metastable or Isomeric States) 423.1.12 Internal Conversion 433.1.13 Multiple Modes of Radioactive Transformation 493.1.14 Transformation by Delayed Neutron Emission 513.1.15 Transformation by Spontaneous Fission 513.1.16 Proton Emission 533.2 Decay Schemes 543.3 Rate of Radioactive Transformation 573.3.1 Activity 583.3.2 Units of Radioactive Transformation 583.3.3 Mathematics of Radioactive Transformation 603.3.4 Half-Life 623.3.5 Mean Life 633.3.6 Effective Half-life 643.4 Radioactivity Calculations 653.4.1 Half-life Determination 683.5 Activity–mass Relationships 703.5.1 Specific Activity 703.6 Radioactive Series Transformation 733.6.1 Series Decay Calculations 733.6.2 Recursive Kinetics: the Bateman Equations 763.7 Radioactive Equilibrium 773.7.1 Secular Equilibrium 783.7.2 Transient Equilibrium 803.7.3 Radionuclide Generators 813.8 Total Number of Transformations (Uses of t and λEff) 843.9 Discovery of the Neutrino 86Acknowledgments 87Other Suggested Sources 87Problems – Chapter 3 884 Interactions 914.1 Production of X-rays 914.2 Characteristic X-rays 934.2.1 X-rays and Atomic Structure 954.2.2 Auger Electrons 964.3 Nuclear Interactions 984.3.1 Cross-Section 1004.3.2 Q-values for Nuclear Reactions 1024.4 Alpha Particle Interactions 1044.4.1 Alpha–Neutron Reactions 1054.5 Transmutation by Protons and Deuterons 1064.5.1 Proton–Alpha Particle (p,α) Reactions 1084.5.2 Proton–Neutron (p,n) Reactions 1094.5.3 Proton–Gamma (p,γ) Reactions 1104.5.4 Proton–Deuteron Reactions 1104.5.5 Deuteron–Alpha (d,α) Reactions 1114.5.6 Deuteron–Proton (d,p) and Deuteron–Neutron (d,n) Reactions 1114.6 Neutron Interactions 1144.6.1 Radiative Capture (n,γ) Reactions 1144.6.2 Charged Particle Emission (CPE) 1154.6.3 Neutron–Proton (n,p) Reactions 1164.6.4 Neutron–Neutron (n,2n) Reactions 1164.7 Activation Product Calculations 1174.7.1 Neutron Activation Product Calculations 1194.7.2 Charged Particles Calculations 1244.8 Medical Isotope Reactions 1264.9 Transuranium Elements 1284.10 Photon Interactions 1304.10.1 Activation by Photons 1304.11 Fission and Fusion Reactions 1334.11.1 Fission 1334.11.2 Fusion 1344.12 Summary 138Other Suggested Sources 139Problems – Chapter 4 1395 Nuclear Fission and its Products 1435.1 Fission Energy 1455.2 Physics of Sustained Nuclear Fission 1475.3 Neutron Economy and Reactivity 1525.4 Nuclear Power Reactors 1545.4.1 Reactor Design: Basic Systems 1555.5 Light Water Reactors (LWRs) 1575.5.1 Pressurized Water Reactor (PWR) 1575.5.2 Boiling Water Reactor (BWR) 1595.5.3 Inherent Safety Features of LWRs 1615.5.4 Decay Heat in Power Reactors 1635.5.5 Uranium Enrichment 1645.6 Heavy Water Reactors (HWRs) 1655.6.1 HWR Safety Systems 1685.7 Breeder Reactors 1695.7.1 Liquid Metal Fast Breeder Reactor (LMFBR) 1715.8 Gas-cooled Reactors 1745.8.1 High-temperature Gas Reactor (HTGR) 1755.9 Reactor Radioactivity 1765.9.1 Fuel Cladding 1775.9.2 Radioactive Products of Fission 1785.9.3 Production of Individual Fission Products 1825.9.4 Fission Products in Spent Fuel 1845.9.5 Fission Product Poisons 1855.10 Radioactivity in Reactors 1885.10.1 Activation Products in Nuclear Reactors 1885.10.2 Tritium Production in Reactors 1915.10.3 Low-level Radioactive Waste 1925.11 Summary 193Acknowledgments 194Other Suggested Sources 195Problems – Chapter 5 1956 Naturally Occurring Radiation and Radioactivity 1976.1 Discovery and Interpretation 1976.2 Background Radiation 1996.3 Cosmic Radiation 2006.4 Cosmogenic Radionuclides 2036.5 Naturally Radioacitve Series 2076.5.1 Neptunium Series Radionuclides 2146.6 Singly Occurring Primordial Radionuclides 2146.7 Radioactive Ores and Byproducts 2166.7.1 Resource Recovery 2186.7.2 Uranium Ores 2186.7.3 Water Treatment Sludge 2196.7.4 Phosphate Industry Wastes 2196.7.5 Elemental Phosphorus 2206.7.6 Manhattan Project Wastes 2216.7.7 Thorium Ores 2236.8 Radioactivity Dating 2246.8.1 Carbon Dating 2246.8.2 Dating by Primordial Radionuclides 2256.8.3 Potassium–Argon Dating 2266.8.4 Ionium (230Th) Method 2276.8.5 Lead-210 Dating 2276.9 Radon and its Progeny 2286.9.1 Radon Subseries 2296.9.2 Working Level for Radon Progeny 2326.9.3 Measurement of Radon 2366.10 Summary 240Acknowledgements 241Other Suggested Sources 241Problems – Chapter 6 2427 Interactions of Radiation with Matter 2457.1 Radiation Dose and Units 2457.1.1 Radiation Absorbed Dose 2467.1.2 Radiation Dose Equivalent 2467.1.3 Radiation Exposure 2477.2 Radiation Dose Calculations 2497.2.1 Inverse Square Law 2497.3 Interaction Processes 2507.4 Interactions of Alpha Particles and Heavy Nuclei 2527.4.1 Recoil Nuclei and Fission Fragments 2547.4.2 Range of Alpha Particles 2547.5 Beta Particle Interactions and Dose 2577.5.1 Energy Loss by Ionization 2587.5.2 Energy Losses by Bremsstrahlung 2587.5.3 Cerenkov Radiation 2597.5.4 Attenuation of Beta Particles 2617.5.5 Range Versus Energy of Beta Particles 2627.5.6 Radiation Dose from Beta Particles 2647.5.7 Beta Dose from Contaminated Surfaces 2677.5.8 Beta Contamination on Skin or Clothing 2687.5.9 Beta Dose from Hot Particles 2697.6 Photon Interactions 2707.6.1 Photoelectric Interactions 2717.6.2 Compton Interactions 2727.6.3 Pair Production 2747.6.4 Photodisintegration 2767.7 Photon Attenuation and Absorption 2777.7.1 Attenuation (μ) and Energy Absorption (μEn) Coefficients 2807.7.2 Effect of E and Z on Photon Attenuation/Absorption 2847.7.3 Absorption Edges 286Checkpoints 2887.8 Energy Transfer and Absorption by Photons 2887.8.1 Electronic Equilibrium 2937.8.2 Bragg–Gray Theory 2957.9 Exposure/Dose Calculations 2967.9.1 Point Sources 2977.9.2 Gamma Ray Constant, Γ 2987.9.3 Exposure and Absorbed Dose 3007.9.4 Exposure, Kerma, and Absorbed Dose 3017.10 Summary 303Acknowledgments 303Other Suggested Sources 304Problems – Chapter 7 3048 Radiation Shielding 3078.1 Shielding of Alpha-Emitting Sources 3078.2 Shielding of Beta-Emitting Sources 3088.2.1 Attenuation of Beta Particles 3088.2.2 Bremsstrahlung Effects for Beta Shielding 3118.3 Shielding of Photon Sources 3148.3.1 Shielding of Good Geometry Photon Sources 3158.3.2 Half-Value and Tenth-Value Layers 3228.3.3 Shielding of Poor Geometry Photon Sources 3248.3.4 Use of Buildup Factors 3308.3.5 Effect of Buildup on Shield Thickness 3318.3.6 Mathematical Formulations of the Buildup Factor 3338.4 Gamma Flux for Distributed Sources 3388.4.1 Line Sources 3398.4.2 Ring Sources 3418.4.3 Disc and Planar Sources 3428.4.4 Shield Designs for Area Sources 3438.4.5 Gamma Exposure from Thick Slabs 3508.4.6 Volume Sources 3558.4.7 Buildup Factors for Layered Absorbers 3568.5 Shielding of Protons and Light Ions 3578.6 Summary 360Acknowledgments 360Other Suggested Sources 361Problems – Chapter 8 3619 Internal Radiation Dose 3659.1 Absorbed Dose in Tissue 3659.2 Accumulated Dose 3669.2.1 Internal Dose: Medical Uses 369Checkpoints 3699.3 Factors In The Internal Dose Equation 3709.3.1 The Dose Reciprocity Theorem 3779.3.2 Deposition and Clearance Data 3789.3.3 Multicompartment Retention 3789.4 Radiation Dose from Radionuclide Intakes 3839.4.1 Risk-Based Radiation Standards 3849.4.2 Committed Effective Dose Equivalent (CEDE) 3859.4.3 Biokinetic Models: Risk-Based Internal Dosimetry 3869.4.4 Radiation Doses Due to Inhaled Radionuclides 3889.4.5 Radiation Doses Due to Ingested Radionuclides 3989.5 Operational Determinations of Internal Dose 4059.5.1 Submersion Dose 406Checkpoints 4069.6 Tritium: a Special Case 4089.6.1 Bioassay of Tritium: a Special Case 4109.7 Summary 411Other Suggested Sources 412Problems – Chapter 9 41210 Environmental Dispersion 41510.1 Atmospheric Dispersion 41710.1.1 Atmospheric Stability Effects on Dispersion 42010.1.2 Atmospheric Stability Classes 42210.1.3 Calculational Procedure: Uniform Stability Conditions 42410.1.4 Distance xmax of Maximum Concentration (Xmax) 42610.1.5 Stack Effects 427Checkpoints 42910.2 Nonuniform turbulence: Fumigation, Building Effects 42910.2.1 Fumigation 42910.2.2 Dispersion for an Elevated Receptor 43110.2.3 Building Wake Effects: Mechanical Turbulence 43210.2.4 Concentrations of Effluents in Building Wakes 43310.2.5 Ground-level Area Sources 43510.2.6 Effect of Mechanical Turbulence on Far-field Diffusion 43610.3 Puff Releases 43810.4 Sector-Averaged X/Q Values 43910.5 Deposition/Depletion: Guassian Plumes 44310.5.1 Dry Deposition 44310.5.2 Air Concentration Due to Resuspension 44710.5.3 Wet Deposition 44910.6 Summary 452Other Suggested Sources 452Problems – Chapter 10 45311 Nuclear Criticality 45511.1 Nuclear Reactors and Criticality 45611.1.1 Three Mile Island Accident 45611.1.2 Chernobyl Accident 45811.1.3 NRX Reactor: Chalk River, Ontario, December 1952 46111.1.4 SL-1 Accident 46111.1.5 K-reactor, Savannah River Site, 1988 46211.1.6 Fukushima-Daichi Plant—Japan, March 11, 2011 46311.2 Nuclear Explosions 46411.2.1 Fission Weapons 46411.2.2 Fusion Weapons 46511.2.3 Products of Nuclear Explosions 46611.2.4 Fission Product Activity and Exposure 467Checkpoints 46911.3 Criticality Accidents 47011.3.1 Y-12 Plant, Oak Ridge National Laboratory, TN: June 16, 1958 47011.3.2 Los Alamos Scientific Laboratory, NM: December 30, 1958 47111.3.3 Idaho Chemical Processing Plant: October 16, 1959, January 25, 1961, and October 17, 1978 47211.3.4 Hanford Recuplex Plant: April 7, 1962 47311.3.5 Wood River Junction RI: July 24, 1964 47311.3.6 UKAEA Windscale Works, UK: August 24, 1970 47411.3.7 Bare and Reflected Metal Assemblies 47411.4 Radiation Exposures in Criticality Events 47511.5 Criticality Safety 47611.5.1 Criticality Safety Parameters 47811.6 Fission Product Release in Criticality Events 48211.6.1 Fast Fission in Criticality Events 48311.7 Summary 485Acknowledgments 486Other Suggested Sources 486Problems – Chapter 11 48612 Radiation Detection and Measurement 48912.1 Gas-Filled Detectors 48912.2 Crystalline Detectors/Spectrometers 49312.3 Semiconducting Detectors 49412.4 Gamma Spectroscopy 49512.4.1 Gamma-Ray Spectra: hv ≤ 1.022 MeV 49512.4.2 Gamma-Ray Spectra: hv ≥ 1.022 MeV 50012.4.3 Escape Peaks and Sum Peaks 50212.4.4 Gamma Spectroscopy of Positron Emitters 50312.5 Portable Field Instruments 50412.5.1 Geiger Counters 50412.5.2 Ion Chambers 50512.5.3 Microrem Meters 50612.5.4 Alpha Radiation Monitoring 50612.5.5 Beta Radiation Surveys 50712.5.6 Removable Radioactive Surface Contamination 50812.5.7 Instrument Calibration 50912.6 Personnel Dosimeters 50912.6.1 Film Badges 50912.6.2 Thermoluminescence Dosimeters (TLDs) 51012.6.3 Pocket Dosimeters 51112.7 Laboratory Instruments 51112.7.1 Liquid Scintillation Analysis 51112.7.2 Proportional Counters 51512.7.3 End-window GM Counters 51712.7.4 Surface Barrier Detectors 51812.7.5 Range Versus Energy of Beta Particles 519Other Suggested Sources 520Problems – Chapter 12 52113 Statistics in Radiation Physics 52313.1 Nature of Counting Distributions 52313.1.1 Binomial Distribution 52513.1.2 Poisson Distribution 52513.1.3 Normal Distribution 52713.1.4 Mean and Standard Deviation of a Set of Measurements 53013.1.5 Uncertainty in the Activity of a Radioactive Source 53113.1.6 Uncertainty in a Single Measurement 533Checkpoints 53313.2 Propagation of Error 53413.2.1 Statistical Subtraction of a Background Count or Count Rate 53513.2.2 Error Propagation of Several Uncertain Parameters 53713.3 Comparison of Data Sets 53813.3.1 Are Two Measurements Different? 53813.4 Statistics for the Counting Laboratory 54113.4.1 Uncertainty of a Radioactivity Measurement 54113.4.2 Determining a Count Time 54213.4.3 Efficient Distribution of Counting Time 54413.4.4 Detection and Uncertainty for Gamma Spectroscopy 54513.4.5 Testing the Distribution of a Series of Counts (the Chi-square Statistic) 54713.4.6 Weighted Sample Mean 54813.4.7 Rejection of Data 54913.5 Levels of Detection 55113.5.1 Critical Level 55213.5.2 Detection Limit (Ld) or Lower Level of Detection (LLD) 55413.6 Minimum Detectable Concentration or Contamination 55813.6.1 Minimum Detectable Concentration (MDConc.) 55813.6.2 Minimum Detectable Contamination (MDCont.) 56013.6.3 Less-than Level (Lt) 56113.6.4 Interpretations and Restrictions 56113.7 Log Normal Data Distributions 56213.7.1 Particle Size Analysis 565Acknowledgment 569Other Suggested Sources 569Chapter 13 – Problems 56914 Neutrons 57114.1 Neutron Sources 57114.2 Neutron Parameters 57314.3 Neutron Interactions 57514.3.1 Neutron Attenuation and Absorption 57614.4 Neutron Dosimetry 57814.4.1 Dosimetry for Fast Neutrons 58114.4.2 Dose from Thermal Neutrons 58314.4.3 Monte Carlo Calculations of Neutron Dose 58514.4.4 Kerma for Neutrons 58814.4.5 Dose Equivalent Versus Neutron Flux 58814.4.6 Boron Neutron Capture Therapy (BNCT) 59114.5 Neutron Shielding 59114.5.1 Neutron Shielding Materials 59114.5.2 Neutron Shielding Calculations 59314.5.3 Neutron Removal Coefficients 59414.5.4 Neutron Attenuation in Concrete 59714.6 Neutron Detection 59814.6.1 Measurement of Thermal Neutrons 59914.6.2 Measurement of Intermediate and Fast Neutrons 60014.6.3 Neutron Foils 60214.6.4 Albedo Dosimeters 60414.6.5 Flux Depression of Neutrons 60414.7 Summary 605Acknowledgment 605Other Suggested Sources 605Problems – Chapter 14 606Answers to Selected Problems 607Appendix A 613Appendix B 615Appendix C 625Appendix D 629Index 657
“The book is intended as a comprehensive treatise about all the physics aspects upon which radiation protection is based.” (Health Physics, 1 March 2014)“A highly practical resource for health physicists and other professionals in radiation protection.” (ETDE Energy Database, 1 October 2013)