Del 21

Néron Models

Inbunden, Engelska, 1990

Av Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud

2 369 kr

Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Finns i fler format (1)


Néron models were invented by A. Néron in the early 1960s in order to study the integral structure of abelian varieties over number fields. Since then, arithmeticians and algebraic geometers have applied the theory of Néron models with great success. Quite recently, new developments in arithmetic algebraic geometry have prompted a desire to understand more about Néron models, and even to go back to the basics of their construction. The authors have taken this as their incentive to present a comprehensive treatment of Néron models. This volume of the renowned "Ergebnisse" series provides a detailed demonstration of the construction of Néron models from the point of view of Grothendieck's algebraic geometry. In the second part of the book the relationship between Néron models and the relative Picard functor in the case of Jacobian varieties is explained. The authors helpfully remind the reader of some important standard techniques of algebraic geometry. A special chapter surveys the theory of the Picard functor.

Produktinformation

  • Utgivningsdatum1990-04-12
  • Mått178 x 254 x 25 mm
  • Vikt845 g
  • FormatInbunden
  • SpråkEngelska
  • SerieErgebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
  • Antal sidor328
  • Upplaga1990
  • FörlagSpringer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • ISBN9783540505877