Nanomaterials for Electrochemical Energy Storage Devices
Inbunden, Engelska, 2019
3 379 kr
Produktinformation
- Utgivningsdatum2019-10-11
- Mått10 x 10 x 10 mm
- Vikt454 g
- FormatInbunden
- SpråkEngelska
- Antal sidor660
- FörlagJohn Wiley & Sons Inc
- ISBN9781119510031
Tillhör följande kategorier
Poulomi Roy obtained her PhD on Nanomaterials from the Indian Institute of Technology Kharagpur, India in 2007. Currently, Dr. Roy is a Senior Scientist at CSIR Central Mechanical Engineering Research Institute (CMERI). Before joining CSIR CMERI, she worked as an Assistant Professor at Birla Institute of Technology Mesra. She has published about 50 research articles in various high impact international journals. Her research interests comprise the development of nanomaterials based on metal oxides, chalcogenides and hybrid materials for their applications in energy conversion to storage devices, including photocatalysis, electrocatalysis, water splitting, dye-sensitized solar cells, supercapacitors, batteries etc. Suneel Kumar Srivastava obtained his PhD (1986) from the Indian Institute of Technology, Kharagpur. He is currently Professor in the Department of Chemistry and Head in School of Energy Science and Engineering of Indian Institute of Technology, Kharagpur. Prof. Srivastava carried out his post-doctoral research work as DAAD Fellow in Technical University, Karlsruhe (198889, 2003, 2006), University of Siegen (1994, 1999), Technical University, M??nchen (2009), IPF Dresden (2013) Germany and University of Nantes, France (2003, 2007) as a Visiting Scientist. He has guided 17 PhD students, published about 180 research papers in referred journals and co-edited a book on 'Hybrid Nanomaterials' (Wiley-Scrivener 2017).
- Preface xviiPart 1: General Introduction to Battery and Supercapacitor, Fundamental Physics Characterization Techniques 11 Electrochemistry of Rechargeable Batteries Beyond Lithium-Based Systems 3Brij Kishore, Shyama Prasad Mohanty and Munichandraiah Nookala1.1 Lithium-Based Batteries 41.1.1 Lithium Primary Batteries 41.1.2 Lithium Metal-Based Secondary Batteries 51.1.3 Polymer Electrolyte-Based Lithium Batteries 51.1.4 Lithium-Ion Batteries 61.1.5 Advances in Li-Ion Batteries 81.1.6 Beyond Lithium-Based Systems 91.2 Cathodes for Na-Ion Batteries 91.2.1 Transition Metal Oxides 91.2.1.1 Single Metal Oxides 121.2.1.2 Multi-Metal Oxides 161.2.2 Polyanionic Compounds 171.2.3 Fluorides 211.2.4 Metal Hexacyanometalates 211.2.5 Organic Compounds 221.3 Anodes for Na-Ion Batteries 231.3.1 Carbon-Based Electrodes 231.3.2 Alloy Electrodes 251.3.3 Phosphorous, Phosphides, and Nitrides 261.3.4 Sulfides and Selenides 271.3.5 Phosphates 291.3.6 Organic Materials 291.3.7 Oxides 301.3.8 Sodium–Sulfur Batteries 331.3.9 Na-Air Batteries 351.4 Potassium Batteries 381.4.1 Potassium-Ion Batteries 391.4.1.1 Electrolytes 401.4.1.2 Cathode Materials 401.4.1.3 Anode Materials 411.4.2 Potassium–Sulfur Batteries 431.4.3 Potassium–Air Batteries 431.5 Mg-Based Rechargeable Batteries 441.6 Conclusions 49References 502 Li-Ion Battery Materials: Understanding From Computational View-Point 67Jishnu Bhattacharya2.1 Cathode 672.1.1 Cluster Expansion 682.1.1.1 LiTi2O4 702.1.1.2 LiTiS2 732.1.1.3 LiMn2O4 742.1.1.4 LixCoO2 772.1.1.5 Li(Ni0.5Mn0.5)O2 802.1.2 Phase Stability with Gas-Phase Evolution 802.1.3 Solid State Diffusion 842.1.3.1 LiTi2O4 862.1.3.2 LiTi2S4 872.1.3.3 LiFePO4 932.1.3.4 LiCoO2 942.1.3.5 Lithium Mobility in Layered Transition Metal Oxides 982.1.4 Prediction of New Materials and Combinatorial Chemistry 1022.1.4.1 Phosphates 1022.1.4.2 Metal Mixing in Olivines 1072.2 Anode 1132.2.1 Phase Transitions in Graphite 1132.2.2 Fracture in Graphite 1152.2.3 Diffusion in Graphene 1182.2.4 Lithiation of Silicon Anodes 1222.3 Electrolyte 1252.3.1 Solid Electrolyte Interphase 1262.3.2 Cathode Side Effects of Electrolyte 1302.3.3 Solid State Electrolytes 1312.3.3.1 LGPS Family 1312.3.3.2 Diffusion in Solid Electrolytes – Case of LGPS 1352.4 Conclusions 140Acknowledgment 141References 141Part 2: Battery: Anode, Cathode and Non-Li-Ion Batteries 1453 Nanostructured Anode Materials for Batteries (Lithium Ion, Ni-MH, Lead-Acid, and Thermal Batteries 147Surendra K. Martha and Liju Elias3.1 Introduction 1483.2 Li-Ion Batteries 1493.2.1 Electrochemistry of Lithium Ion Batteries 1493.2.2 Compatibility of Electrode Materials with the Electrolyte 1513.2.3 Anode Materials for LIBs 1533.2.3.1 Lithium Metal 1533.2.3.2 Intercalation/De-Intercalation Materials 1563.2.3.3 Alloying/De-Alloying Materials 1683.2.3.4 Conversion Type Anode Materials 1763.3 Nickel Metal Hydride Batteries 1803.3.1 Mechanism of Ni-MH Battery Operation 1813.3.2 Anode Materials 1833.3.2.1 Rare Earth-Based AB5 Alloys 1843.3.2.2 Ti and Zr-Based AB2 Type Alloys 1853.3.2.3 Mg Based Alloys 1853.3.2.4 Rare Earth–Mg–Ni-Based Superlattice Alloys 1863.3.2.5 Ti–V-Based Multicomponent Multiphase Alloys 1873.4 Lead-Acid Batteries 1873.4.1 Operating Principle 1893.4.2 Negative Electrodes of Lead-Acid Batteries 1903.4.2.1 Preparation of Negative Electrode 1903.4.2.2 Sulfation 1933.5 Thermal Batteries 2013.5.1 Anode Materials for Thermal Batteries 2033.5.1.1 Ca-Based Anodes 2033.5.1.2 Mg and Al-Based Anodes 2043.5.1.3 Li Anode 2043.5.1.4 Li–Al Anodes 2043.5.1.5 Li–Si Anode 205References 2074 Nanostructured Cathode Materials for Li-/Na-Ion Aqueous and Non-Aqueous Batteries 231Farheen N. Sayed, Ganguli Babu and P. M. Ajayan4.1 Introduction 2324.1.1 Li+ vs. Na+ ion Batteries 2344.1.2 Aqueous vs. Non-Aqueous Electrolyte 2354.2 Background of Cathode Materials 2384.3 Important Types of Cathode (Class) with Different Electrolytes 2404.3.1 Li-ion based Nano Cathodes with Aqueous Electrolyte 2404.3.2 Li-ion based Nano Cathodes with Non-Aqueous Electrolyte 2444.3.3 Na+ ion based Nano Cathodes with Aqueous Electrolyte 2484.3.4 Na+ ion based Nano Cathodes with Non-Aqueous Electrolyte 2494.4 Methods to Prepare Nanostructured Cathodes 2544.4.1 Solid-State Protocols 2564.4.2 Sol–Gel Synthesis 2574.4.3 Combustion Method 2594.4.4 Hydrothermal Route 2604.5 Future Aspects 262References 2635 Polymer-Assisted Chemical Solution Method to Metal Oxide Nanoparticles for Lithium-Ion Batteries 271Di Huang and Hongmei Luo5.1 Introduction 2725.2 Carbon-Based Composites 2735.3 Polymer-Assisted Chemical Solution Method 2765.4 Oxygen Deficiency 2845.5 Summary and Future Perspectives 284References 2866 Li–Air: Current Scenario and Its Future 291Saravanan Karuppiah, Remith Pongilat and Kalaiselvi Nallathamby6.1 Introduction: Why Lithium–Air Batteries? 2916.2 General Characteristics 2966.2.1 Types of Lithium–Air Batteries 2976.3 Chemistry and Mechanism 2996.3.1 Oxygen Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and the Catalysts 3016.4 Critical Challenges 3096.4.1 Electrolytes 3106.4.2 Decomposition of Electrolyte During Discharge 3106.4.3 Passivation and Blockage of Oxygen Diffusion 3146.4.4 Large Polarization 3146.4.5 Lithium Dendrite Formation 3156.4.6 Electrocatalysis 3166.4.7 Rate Capability 3176.4.8 Energy and Power Density 3176.4.9 Volume Changes 3186.5 Non-Aqueous Li/Air Systems 3186.5.1 Electrochemistry of Oxygen Reduction and Oxidation in Non-Aqueous System 3186.5.2 Technical Challenges in NLAS 3226.5.2.1 Designing of Air Cathode/Oxygen Transport 3226.5.2.2 Effective Loading of Catalysts 3236.5.2.3 Slow Kinetics of Oxygen Reactions/Deposition of Solid Insulating Products 3236.5.2.4 Decomposition of Non-Aqueous Electrolytes/Effect of Possible Side Reactions 3236.5.2.5 Lithium Dendrite Formation and Side Reactions of Li with H2O and Air 3246.5.3 Electrocatalysts for NLAS 3246.5.3.1 Carbon Based Materials 3246.5.3.2 Metal and/or Metal Oxides 3326.5.3.3 Composite Materials 3366.5.3.4 Other Cathode Materials 3386.5.4 Electrolytes Deployed in Non-Aqueous Li–Air Cells 3396.5.4.1 Alkyl Carbonates 3396.5.4.2 Esters 3406.5.4.3 Ethers 3406.5.4.4 Nitriles 3406.5.4.5 Amides 3416.5.4.6 DMSO 3416.5.4.7 Sulfones 3416.5.4.8 Ionic Liquids 3426.5.5 Morphology of the Deposited Products 3436.6 Aqueous Lithium–Air System 3456.6.1 Approaches for the Formation of Water Stable Lithium Metal 3466.6.1.1 Solid Electrolyte 3466.6.1.2 Stability of Solid Electrolyte—Why Do We Need Buffer Layer? 3506.6.1.3 Buffer Layer 3516.6.2 Catholytes 3556.6.2.1 Acidic Catholyte 3556.6.2.2 Alkaline Catholyte 3586.6.3 Catalysts for Acidic and Alkaline System 3596.6.4 Managing the Precipitation of LiOH.H2O 3596.6.5 Hybrid Lithium–Air Battery 3636.7 Applications 3646.8 Future of Lithium–Air Systems 365References 3677 Sodium-Ion Battery Anode Stabilization 377Prasit Kumar Dutta, Arnab Ghosh and Sagar Mitra7.1 Introduction 3777.2 History of NIB 3787.3 Operational Principle 3817.4 Types of Storage Mechanisms 3827.5 Issues and Challenges in a NIB 3847.6 Brief Updates on Cathode and Anode Materials Research 3867.6.1 Cathode Materials 3877.6.1.1 Classification of Layered Structures 3887.6.1.2 O3-Type Layered NaFeO2 3897.6.1.3 O3-, P3-, and P2-Type NaxCoO2 3917.6.1.4 Sodium Vanadium Phosphate, Na3V2(PO4)3 3927.6.1.5 Emerging Cathodes 3927.6.2 Anode Materials 3937.6.2.1 Carbon-Based Systems 3947.6.2.2 Ti-Based Oxide Anodes 3957.6.2.3 Alloy Anodes 3967.6.3 Room-Temperature Sodium–Sulfur (RT Na–S) Battery 4007.6.4 Electrolyte Modification 4047.7 Problems in a NIB on Anode Stabilization 4057.7.1 Problems with Conductive Additive 4077.7.2 Cyclic Voltammetry Study with Conductive Additive 4097.7.3 Ex Situ SEM Studies 4107.7.4 Solving the Conductive Carbon and Electrolyte Interface 4117.8 Few Solutions for Future 4127.8.1 In Situ Raman Mapping 4137.8.2 In Situ FTIR 4157.8.3 In Situ Synchrotron XRD Coupled with DFT Analysis 4167.8.4 SIMS-TOF 4177.8.5 In Situ TEM Coupled with DFT Analysis 4177.8.6 STEM-HAADF and EELS 4197.8.7 Time-Lapse Tomography of Volume Expansion 4207.9 Perception 421 References 4228 Polymer-Based Separators for Lithium-Ion Batteries 429J. C. Barbosa, C. M. Costa and S. Lanceros-Méndez8.1 Introduction 4298.2 Polymer Types and Characteristics 4318.3 Separator Types 4338.3.1 Solvent Casting 4338.3.2 Electrospun Separator Membranes 4378.3.3 Surface Modification 4418.3.4 Coating Process 4438.3.5 Natural and Biopolymers 4508.4 Summary and Outlook 451Acknowledgments 452List of Symbols and Abbreviations 452References 454Part 3: Supercapacitor: Pseudocapacitor, EDLC 4679 Nanostructured Carbon-Based Electrodes for Supercapacitor Applications 469Sanjit Saha and Tapas Kuila9.1 Introduction 4709.2 Scope of the Chapter 4719.3 Charge Storage Mechanism of Carbonaceous Materials 4719.4 Nanostructured Carbonaceous Materials 4739.4.1 Activated Carbon 4759.4.1.1 Activated Carbon as Supercapacitor Electrode 4769.4.1.2 Doping of Activated Carbon as Supercapacitor Electrode 4829.4.2 Graphene 4839.4.2.1 Graphene as Supercapacitor Electrode 4849.4.3 Carbon Nano Tube (CNT) 4979.4.3.1 CNT Supercapacitor 4989.4.3.2 Functionalized CNT Supercapacitor 5009.5 Nanostructured Carbon-Based Supercapacitor Device 5039.5.1 Carbon-Based Redox Electrode in ASC Device 5049.5.2 Carbon-Based Negative (EDLC) Electrode in ASC Device 5049.5.3 Different Carbon-Based ASC Device 5059.5.4 Carbon-Based Printed Supercapacitor Device 5069.6 Conclusions 508References 50810 Nanostructured Metal Oxide, Hydroxide, and Chalcogenide for Supercapacitor Applications 521Poulomi Roy, Shipra Raj and Suneel Kumar Srivastava10.1 Introduction 52210.2 Materials Architecture and Electrode Designing 52410.3 Materials 52610.3.1 Metal Hydroxides 52610.3.1.1 Mononuclear Metal Hydroxides 52610.3.2 Layered Double Hydroxides (LDHs) 53210.3.3 Layered Triple Hydroxides (LTHs) 53410.4 Metal Oxide 53510.4.1 Binary Metal Oxides 53510.4.2 Ternary Metal Oxide 54210.4.3 Quaternary Metal Oxide 54310.5 Metal Chalcogenides 54410.5.1 Binary Metal Chalcogenides 54510.5.2 Ternary Metal Chalcogenides 55210.5.3 Quarternary Metal Chalcogenides 55310.6 Summary and Future Perspective 555References 55811 Polymer-Based Flexible Electrodes for Supercapacitor Applications 573Syam Kandula, Nam Hoon Kim and Joong Hee Lee11.1 Introduction 57411.2 Pure Conducting Polymers (PCs) 57511.2.1 Polyaniline (PANI) 57611.2.2 Polypyrrole (PPy) 57711.2.3 Poly(3,4-ethylenedioxythiophene) (PEDOT) 57811.3 Conducting Polymer Composites (CPCs) 57911.3.1 PANI-Based Binary Composites 58011.3.1.1 PANI- and Carbon-Based Binary Composites 58011.3.1.2 PANI and Metal Oxide/Metal Sulfide Based Binary Composites 59011.3.1.3 PANI-Based Ternary Composites 59311.3.2 PPy-Based Binary Composites 59511.3.2.1 PPy- and Carbon-Based Binary Composites 59811.3.2.2 PPy and Metal Oxide/Metal Sulfide-Based Binary Composites 60911.3.3 PEDOT-Based Binary Composites 61411.4 Conclusions and Perspective 616References 619Part 4: Outlook and Conclusion 625Outlook and Conclusion 627Index 629
Du kanske också är intresserad av
Periodontal Medicine and Systems Biology
Brian Henderson, Michael Curtis, Robert Seymour, Nikolaos Donos, Brian (University College London) Henderson, Michael (Barts and the London Queen Mary's School of Medicine and Dentistry) Curtis, Robert (University College London) Seymour, Nikolaos (University College London) Donos
3 379 kr
Endometriosis
Linda C. Giudice, Johannes L. H. Evers, David L. Healy, USA) Giudice, Linda C. (Robert B Jaffe Endowed Professor and Chair of Obstetrics, Gynecology, and Reproductive Sciences at the University of California, San Francisco, The Netherlands) Evers, Johannes L. H. (Professor of Obstetrics and Gynaecology at Maastricht University, Maastricht, The Netherlands and Division leader of the Division of Developmental Biology, GROW, Research Institute for Growth & Development, Maastricht University, Maastricht, Australia) Healy, David L. (Professor and Chairman of the Monash University Department of Obstetrics and Gynaecology and Head of the Reproductive Biology Unit at Monash Medical Centre, Victoria, Linda C Giudice, Johannes L H Evers, David L Healy
3 379 kr