Microbial Electrochemical Technologies, 2 Volumes
Fundamentals and Applications
Inbunden, Engelska, 2023
Av Makarand M. Ghangrekar, Rao Y. Surampalli, Tian C. Zhang, Narcis M. Duteanu, Makarand M. (IIT Kharagpur) Ghangrekar, Evironment and Sustainability) Surampalli, Rao Y. (Global Institute for Energy, Tian C. (University of Nebraska-Lincoln) Zhang, Narcis M. (Timisoara Polytechnic University) Duteanu
3 849 kr
Produktinformation
- Utgivningsdatum2023-11-27
- Mått170 x 244 x 30 mm
- Vikt1 361 g
- FormatInbunden
- SpråkEngelska
- Antal sidor768
- FörlagWiley-VCH Verlag GmbH
- ISBN9783527350735
Tillhör följande kategorier
Makarand M. Ghangrekar, PhD, is Professor and Institute Chair in the Department of Civil Engineering, Indian Institute of Technology, Kharagpur, India. He heads both the School of Environmental Science and Engineering and the PK Sinha Centre for Bioenergy and renewables. Rao Y. Surampalli, PhD, is President and CEO of the Global Institute for Energy, Environment, and Sustainability. He previously spent 30 years with the United States Environmental Protection Agency (USEPA). Tian C. Zhang, PhD, is Professor in the Department of Civil and Environmental Engineering at the University of Nebraska-Lincoln. Narcis M. Duteanu, PhD, is Associate Professor in the Department of Applied Chemistry and Inorganic Chemistry and Environmental Engineering at Timisoara Polytechnic University, Romania.
- Preface xiii1 Overview of High-Temperature Polymers 1Xue-Jie Liu, Mengyu Xiao, Wenjie Huang, Xing Yang, and Jun-Wei Zha1.1 Introduction 11.2 Development of High-Temperature Polymers 21.3 Parameters of Polymers with High Temperature Resistance 31.4 Thermal Analysis Technology 51.4.1 Differential Scanning Calorimetry (DSC) 51.4.2 Dynamic Thermomechanical Analysis (DMA) 51.4.3 Thermogravimetric Analysis (TGA) 61.4.4 Static Thermomechanical Analysis (TMA) 71.4.5 Thermal Conductivity 81.4.6 Dynamic Dielectric Analysis (DEA) 91.5 High-Temperature Polymer Materials 91.5.1 Commercial High-Temperature Polymer 91.5.2 Molecular Structure Modification of High-Temperature Polymer 111.5.3 High-Temperature Polymer-Based Composite Materials 131.6 Summary and Outlook 14References 152 Basic Principles of Dielectrics 21Anastasios Chr. Patsidis and Georgios Chr. Psarras2.1 Introduction 212.2 Definition of Dielectrics 212.3 Dipole Moment and Types of Dielectric Materials 222.4 Polarization and Dielectric Permittivity 232.5 Polarization Under Static Electric Field 242.5.1 Dielectric Permittivity and Polarizability 242.5.2 Dipole’s Local Electric Field 272.5.3 Models for Static Dielectric Permittivity: Debye, Onsager, Kirkwood, and Fröhlich 292.6 Polarization Under Time Varying Electric Field 322.6.1 Frequency Dependent Dielectric Permittivity – Debye’s Equations 332.6.2 Models of Dielectric Relaxations 342.6.3 Effect of Temperature 362.7 Conduction Phenomena in Dielectrics 382.8 Active Dielectrics 402.9 Polymers as Dielectric Materials 432.9.1 Dielectric Relaxations in Polymers 432.9.2 Heterogenous Systems – Polymer Matrix Composites 452.10 Thermal Properties of Dielectrics 472.10.1 Heat Capacity 472.10.2 Thermal Conduction of Dielectrics 502.11 Concluding Remarks 51Acknowledgements 51References 523 High-Temperature Energy Storage Polymer Dielectrics for Capacitors 57Zongliang Xie, He Li, Zongren Peng, and Yi Liu3.1 Introduction 573.2 Basic Parameters of High-Temperature Capacitor Materials 603.2.1 Electrical Characteristics of High-Temperature Capacitor Materials 603.2.1.1 Energy Storage Parameters 603.2.1.2 Dielectric Constant and Dielectric Loss 613.2.1.3 Dielectric Breakdown Strength 633.2.1.4 Electrical Conduction and Charge Injection 643.2.2 Thermal Characteristics of high-Temperature Capacitor Materials 653.2.3 Self-Clearing Abilities of High-Temperature Capacitor Materials 673.3 Randomly Dispersed Polymer/Inorganic Nanofiller Composites 693.3.1 Composites Filled with Insulating Fillers 703.3.1.1 Composites Filled with Metal Oxides 703.3.1.2 Composites Filled with Nitrides and Fluorides 713.3.2 Composites Filled with Conductive or Semi-Conductive Fillers 743.3.3 Composites Co-filled with Both Insulating and Semi-Conductive Fillers 763.4 Core@Shell-Structured Nanofillers for Polymer Composites 763.4.1 Organic Shells for Inorganic Nanoparticles 773.4.2 Inorganic Shells for Inorganic Nanoparticles 793.5 Layered Polymer Composites 803.5.1 Polymer Films with Inorganic Layers 803.5.2 Sandwich-Structured Nanocomposites 833.6 Novel Polymers and All-Organic Polymer Composites 853.6.1 Novel Polymers 863.6.1.1 Structural Modification of Commercial High-T g Polymers 863.6.1.2 Cross-linked Polymers 873.6.1.3 Wide Bandgap Polymers 883.6.1.4 Polymers with Polar Groups 893.6.2 All-Organic Polymer Composites 903.6.2.1 Polymer Blends 903.6.2.2 Polymer Doped with Organic Fillers 923.6.2.3 All-Organic Layered Polymer Composites 923.7 Conclusion and Perspective 94References 954 Review on High-Temperature Polymers for Cable Insulation: State-of-the-Art and Future Developments 103Youcef Kemari, Guillaume Belijar, Zarel Valdez-Nava, Frédéric Forget, and Sombel Diaham4.1 Brief History of Cables Development and Insulating Materials 1034.2 Technologies of Modern Power Cables 1064.2.1 Designs and Manufacturing Processes 1064.2.1.1 Wrapping Technology 1064.2.1.2 Extrusion Technology 1104.2.1.3 Micro-Multilayer Multifunctional Electrical Insulation (MMEI) System 1124.2.2 Insulating Material Considerations for High-Temperature Cables 1134.2.2.1 Electrical Requirements 1164.2.2.2 Thermal Requirements 1174.2.2.3 Mechanical Requirements 1184.2.2.4 Environmental and Functional Considerations 1194.2.2.5 Flame Resistance 1204.2.2.6 Smoke Evolution 1214.2.2.7 Toxicity 1214.2.2.8 Corrosivity 1214.2.2.9 Heat Release 1214.2.2.10 Radiation Resistance 1224.2.2.11 Chemical Resistance 1224.2.2.12 Recapitulation of Important Standards for Cables Testing 1254.3 Review of the Most Relevant Electrical Characteristics of High Temperature Insulating Materials 1254.3.1 Dielectric Spectroscopy 1254.3.2 Partial Discharges 1304.3.3 Space Charge and DC Conductivity 1334.3.4 Aging and Degradation 1374.4 Trends and Outlooks 140Author’s Note 142References 1425 High-Temperature Polymer-Based Dielectrics for Advanced Electronic Packaging 149Jie Liu, Peng Li, Jianwei Zhao, and Shuhui Yu5.1 Introduction 1495.1.1 Development of Electronic Packaging Technology 1505.1.2 Requirement of Polymer-Based Dielectrics for Advanced Electronic Packaging Application 1525.1.2.1 Dielectric Properties 1555.1.2.2 Thermal and Thermal–Mechanical Properties 1575.1.2.3 Dynamic Thermomechanical Properties 1575.1.2.4 Thermal Expansion Coefficient 1575.1.2.5 Thermal Conductivity 1585.1.2.6 Other Requirements 1595.2 High-Temperature Polymer and Polymer-Based Dielectrics 1605.2.1 High-Temperature Polymer Dielectrics 1605.2.1.1 Polyimide 1605.2.1.2 Epoxy Resins 1635.2.1.3 Benzocyclobutene Resins 1655.2.1.4 Benzoxazine Resins 1675.2.1.5 Polyaryl Ether 1675.2.1.6 Organic Porous Materials 1685.2.2 High-Temperature Polymer-Based Composite Dielectrics 1695.2.2.1 Inorganic Fillers 1695.2.2.2 Inorganic Porous Fillers 1715.2.2.3 Organic Porous Fillers 1715.3 Summary and Perspectives 172References 1736 High-Temperature Polymer Dielectrics for Printed Circuit Board 181Xu Wang, Xinyu Chen, Junhui Luo, Xin Wang, Yan Chen, and Xiangyang Liu6.1 Epoxy Resin Used for PCB 1826.1.1 Structure of Epoxy Resins 1826.1.2 Properties and Application of Epoxy 1846.1.3 Epoxy Resin Used for CCL in PCB 1856.2 Phenolic Resins Used for PCB 1886.2.1 Structure of Phenolic Resins 1886.2.2 Synthesis of Phenolic Resins 1886.2.2.1 Synthesis of Thermoplastic Phenolic Resins 1896.2.2.2 Thermosetting Phenolic Resins 1906.2.3 Properties of Phenolic Resins and Their Application in PCBs 1916.2.3.1 Application of Phenolic Resins in Copper-Clad Laminates 1926.2.3.2 Tung Oil-Modified Phenolic Resin 1926.2.3.3 Linear Phenolic Resins 1936.2.3.4 Nitrogen-Containing Phenolic Resins 1946.2.3.5 Polybenzoxazine Used for PCB 1956.2.4 Prospect 1966.3 Polyimide Used for PCB 1976.3.1 Introduction to Polyimide and its Performance Characteristics 1976.3.2 Synthesis Method of PI 1976.3.2.1 One-Step Method 1976.3.2.2 Two-Step Method 1986.3.2.3 Three-Step Method 1996.3.3 Classification of PI 1996.3.3.1 Non-Fusible and Insoluble PI 1996.3.3.2 Fusible PI, Thermoplastic PI 2006.3.4 Performance Characteristics of PI 2016.3.5 Application of PI in CCLs 2016.3.5.1 Application of PI in Rigid CCLs 2016.3.5.2 Application of PI in Flexible Copper-Clad Laminate 2026.3.5.3 Application of Thermoplastic Polyimide in Double-Sided Copper Laminates 2036.3.6 Prospect 2066.4 Polymer Materials Used for PCB at High Frequency 2066.4.1 Polytetrafluoroethylene (PTFE) Used for PCB 2076.4.1.1 Structure and Properties of PTFE 2076.4.1.2 PTFE Used for PCB 2096.4.2 Liquid Crystal Polymer (LCP) Used for PCB 2116.4.2.1 Structure and Properties of LCP 2116.4.2.2 LCP Used for PCB 2136.4.3 Other Resins with Potential in the Field of High-Frequency Communications 2156.4.3.1 Cyanate Ester (CE) Used for PCB 2156.4.3.2 Polyphenylene Oxide (PPO) Used for PCB 2186.4.4 Prospect of Polymer Resin for PBC at High Frequency 220References 2217 High-Temperature Polymer Dielectrics for New Energy Power Equipment 227Meng Xiao, Zhiyuan Zhang, Yuyan Chen, Xiaodan Du, and Boxue Du7.1 Introduction 2277.2 High-frequency Power Transformer and Dry-type Bushing 2287.2.1 Modification of Epoxy Resin 2287.2.1.1 Change the Molecular Chain 2297.2.1.2 Develop the Curing Agent with Better Thermal Stability 2327.2.1.3 Filling Modification 2327.3 Modification of Polyimide 2337.3.1 Filling Modification 2347.3.2 Introduce Rigid Groups 2357.3.3 Form the Cross-linked Structure 2377.4 High-temperature Resistant Dielectric Material for Capacitor 2397.4.1 High-temperature Dielectric Polymer 2407.4.1.1 Polytetrafluoroethylene 2407.4.1.2 Polyvinylidene Fluoride 2427.4.1.3 Other Materials 2437.4.2 Nanocomposite Material 2457.4.3 Crosslinked Polymer 2487.5 High-temperature Resistant Dielectric Material for IGBT 2507.5.1 Silicone Gels 2517.5.2 Engineering Plastics 2527.5.2.1 Polyphenylene Sulfide 2537.5.2.2 Polyetheretherketone 2547.6 Concluding Remarks 256References 2578 High-Temperature Polymer Dielectrics for Aerospace Electrical Equipment 269Daomin Min, Xiaofan Song, Lingyu Yang, Yuanshuo Zhang, Shihang Wang, and Shengtao li8.1 Introduction 2698.2 Challenges of Insulating Materials Under High Temperatures 2728.2.1 Substantial Drop in Resistivity Under High Temperatures and Strong Electric Fields 2728.2.2 Greatly Increased Dielectric Loss Factor at High Temperatures 2758.2.3 Space Charge Accumulation and Electric Field Distortion Under High Temperatures and High-DC Electric Fields 2768.2.4 Reduction in Breakdown Strength Under High Temperatures and High-Frequency Voltages 2778.2.5 More Severe Partial Discharge and Accelerated Aging at High Temperatures and High Frequencies 2788.2.6 Reduction in Surface Flashover Voltage Under Electron Irradiations and Voltages 2798.3 High Temperature Resistant and Strong DC Insulating Polymer Dielectrics 2808.3.1 Polyimide Nanocomposites 2808.3.2 Polyetherimide Nanocomposites 2828.3.3 Epoxy Resin Nanocomposites 2848.3.4 Polytetrafluoroethylene Composites 2858.4 High-temperature-Resistant Polymer Dielectrics with Strong Nonlinear Conductivity 2888.4.1 Charge Accumulation and Electric Field Distortion in Polymers Under High Electric Fields 2888.4.2 Charge Accumulation Induced by High-Energy Electron Irradiation and Working Voltage 2908.4.3 Nonlinear Conductivity 2928.5 High-Temperature-Resistant Polymer Dielectrics Under the Coupling of Electron Irradiation and High Voltage 2958.5.1 Mechanism of Vacuum DC Surface Discharge Under the Coupling of Electron Beam Irradiation and High Voltage 2968.5.2 Effect of Electron Beam Irradiation on Vacuum DC Surface Discharge 2968.5.3 Influence of Incident Electron Beam Characteristics on Vacuum dcSurface Discharge 2978.5.4 Influence of Insulation Distance and Electrode Height on Surface Discharge 2988.6 High Temperature Resistant and High-Frequency Strong Insulating Polymer Dielectrics 3008.6.1 Electrical Tree Characteristics of Epoxy Resin Under Bipolar Square Wave Voltage 3018.6.2 Micro/Nano-Doped Epoxy Resin Composites 3028.6.3 Corona Resistance Life of Polyimide Modified by Nano-Doped Multilayer Structure 3048.6.4 Characteristics of Polyimide Modified by Molecular Structure 305References 3079 Smart Polymer Dielectrics 313Xiaoyan Huang, Lu Han, Zhiwen Huang, and Qi li9.1 Introduction 3139.2 Self-Adaptive Dielectrics 3159.3 Self-Reporting Dielectrics 3249.3.1 Self-Reporting Materials Based on Photochromic Compounds 3259.3.2 Self-Reporting Materials Based on Conjugated Polymers 3309.3.3 Self-Reporting Materials Based on Encapsulated Systems 3339.3.4 Outlook for SRDs 3359.4 Self-Healing Dielectrics 3369.4.1 Expectations and Challenges in Developing Self-Healing Dielectrics 3369.4.2 Melting Interdiffusion by Magnetic/Microwave Heating of Nanoparticles 3379.4.3 Microcapsule-Based Self-Healing Dielectrics 3429.4.3.1 Polymerization Triggered by Environmental Stimuli 3429.4.3.2 Polymerization by Latent Functionality 3469.4.4 Intrinsic Self-Healing Dielectrics by Reversible Bonds or Interactions 3489.4.5 Summary of Self-Healing Dielectrics 3519.5 Outlook 352References 35310 The Future Development of High-temperature Polymer Dielectrics 365Qi-Kun Feng, Yong-Xin Zhang, Xin-Jie Wang, and Zhi-Min Dang10.1 Introduction 36510.2 Present Development and Challenges 36510.2.1 Temperature Stability 36510.2.2 Polymer-based High-temperature Composites 36710.2.3 Cost and Scale-up Production 36710.3 Future Perspectives and Trends 36810.3.1 Intrinsic High-temperature Polymers 36810.3.2 Polymer-based High-temperature Composites 36910.3.3 Large-scale Industrial Production 37010.4 Summary 370Acknowledgments 371References 371Index 375
Du kanske också är intresserad av
PFAS in the Environment
Rao Y. Surampalli, USA) Surampalli, Rao Y. (Global Institute for Energy, Environment and Sustainability, Tian C. Zhang, Bashir M. Al-Hashimi, Chih-Ming Kao, Makarand M. Ghangrekar, Puspendu Bhunia, Sovik Das, USA) Zhang, Tian C. (University of Nebraska-Lincoln, UK) Al-Hashimi, Bashir M. (King's College, Taiwan) Kao, Chih-Ming (National Sun Yat-sen University, India) Ghangrekar, Makarand M. (IIT Kharagpur, India) Bhunia, Puspendu (IIT Bhubaneswar, India) Das, Sovik (IIT Delhi
2 889 kr