Introduction to Aerospace Engineering with a Flight Test Perspective
- Nyhet
Inbunden, Engelska, 2025
Av Stephen Corda, Belgium) Corda, Stephen (University of Maryland, USA; Von Karman Institute for Fluid Dynamics
1 819 kr
Kommande
Finns i fler format (1)
Comprehensive textbook integrating the fundamentals of flight testing with introductory concepts in aerospace engineering Introduction to Aerospace Engineering with a Flight Test Perspective provides a solid foundation in the fundamentals of aerospace engineering while illuminating many aspects of real-world flight, covering topics such as aerodynamics, propulsion, performance, and stability and control. End-of-chapter problems are included along with a solutions manual for instructors. The Second Edition includes two new chapters, one providing a timely introduction to hypersonics and the other introducing the fundamentals of spaceflight. Introduction to Aerospace Engineering with a Flight Test Perspective discusses sample topics including: Historical perspectives of the first flights of airplanes, rotorcraft, and spacecraftIntroductory concepts of airplanes, rotorcraft, unmanned aerial vehicles, and lighter-than-air vehiclesPlacement of the reader in the aircraft cockpit to fly and learn the basics of flight testFundamentals of subsonic, transonic, supersonic and hypersonic flight, with explanations of the theories of lift and the generation of dragTypes of non-airbreathing rocket propulsion, including liquid propellant rocket engines and solid rocket motors, as well as air-breathing propulsion, including propeller-driven and jet enginesConcepts of aircraft performance in cruising, climbing, gliding, and turning flightLongitudinal and lateral-directional stability and controlAn introduction to hypersonic vehicles, aero-thermodynamics, and propulsionOrbital mechanics, covering Kepler’s laws, the two-body problem, types of trajectories and orbits, and atmospheric entryIntroduction to Aerospace Engineering with a Flight Test Perspective is an excellent accompaniment to any introductory course in aerospace engineering taught at civilian universities, military academies, and test pilot schools. The text may also be used in more advanced courses in flight testing, aerodynamics, performance, and design.
Produktinformation
- Utgivningsdatum2025-12-25
- FormatInbunden
- SpråkEngelska
- SerieAerospace Series
- Antal sidor880
- Upplaga2
- FörlagJohn Wiley & Sons Inc
- ISBN9781394309269
Tillhör följande kategorier
Stephen Corda has over 40 years of experience in hypersonics, aerospace vehicle design, and experimental flight testing. He has held engineering, academic, management, and flight test positions at The Johns Hopkins University Applied Physics Laboratory, the NASA Dryden (now Armstrong) Flight Research Center, the U.S. Air Force Test Pilot School, the U.S. Naval Academy, the University of Tennessee Space Institute, The Spaceship Company, Stratolaunch, and the Lawrence Livermore National Laboratory
- About the Author xixPreface to the Second Edition xxiSeries Preface Corda 2e Rev 1 xxiiiAbout the Companion Website xxv1 First Flights 11.1 Preflight 21.2 The First Balloon Flight 31.3 The First Airplane Flight 51.4 The First Rotorcraft Flight 81.5 The First Supersonic Flight 91.6 The First Rocket Flights 121.7 The First Hypersonic Flight 171.8 The First Spaceflight 191.9 The First Orbital Spaceflight 201.10 The First Manned Spaceflights 241.11 The First Flight on Mars 261.12 The First Flight Beyond Our Solar System 271.13 Organization of the Book 28References 302 Introductory Concepts 312.1 Introduction to Aircraft 312.1.1 The Airplane 332.1.1.1 Parts of an Airplane 332.1.1.2 Airplane Configurations 352.1.2 The Helicopter 402.1.2.1 Parts of a Helicopter 402.1.2.2 Helicopter Configurations 422.1.3 Lighter-Than-Air Aircraft 442.1.3.1 The Balloon 442.1.3.2 The Airship 472.1.4 The Unmanned Aerial Vehicle 502.2 Introductory Flight Concepts 522.2.1 Mach Number and the Regimes of Flight 522.2.2 The Free-Body Diagram and the Four Forces 552.2.2.1 Wings-Level, Unaccelerated Flight 562.2.2.2 Climbing, Unaccelerated Flight 582.2.2.3 Descending, Unaccelerated Flight 592.2.3 Aircraft Motions 602.2.4 Angle-of-Attack and Angle-of-Sideslip 612.2.5 FTT: The Trim Shot 632.2.6 The Flight Envelope 662.2.6.1 Flight Envelope Boundaries 662.2.6.1.1 Aerodynamic Lift Limit 672.2.6.1.2 Jet Engine Surge Limit 672.2.6.1.3 Altitude Limit 682.2.6.1.4 Airspeed Limit 692.2.6.1.5 Mach Number Limit 692.2.6.2 Flight Envelope Examples 702.2.6.3 Comparison of Flight Envelopes 762.3 The Atmosphere 772.3.1 Altitude Definitions 772.3.2 Physical Description of the Atmosphere 812.3.3 Chemical Composition of the Atmosphere 822.3.4 Layers of the Atmosphere 832.3.4.1 The Troposphere 842.3.4.2 The Stratosphere 842.3.4.3 The Mesosphere 852.3.4.4 The Thermosphere 852.3.4.5 The Exosphere and Hard Space 862.3.5 GTT: Cabin Pressurization Test 862.3.6 Equation of Fluid Statics: The Hydrostatic Equation 882.3.7 The Standard Atmosphere 922.3.7.1 Development of the Standard Atmosphere Model 932.3.7.1.1 Isothermal Region 942.3.7.1.2 Gradient Region 962.3.7.2 Approximate, Exponential Atmosphere Model 992.3.7.3 Standard Atmosphere Curve Fit Equations 1012.3.7.4 Temperature, Pressure, and Density Ratios 1012.4 Introductory Flight Test Concepts 1042.4.1 What Is Flight Test? 1042.4.2 Types of Flight Testing 1052.4.3 The Flight Test Process 1062.4.4 Flight Test Techniques 1082.4.4.1 The Flight Profile 1092.4.4.2 Flight Test Data Collection 1102.4.5 Flight Test Safety and Risk Assessment 1112.4.6 The X-Planes 112References 115Problems 1153 Foundations of Aerodynamics 1173.1 Introduction 1173.2 Fundamental Physical Properties of a Fluid 1183.2.1 The Fluid Element 1183.2.2 Thermodynamic Properties of a Fluid 1193.2.2.1 Pressure 1193.2.2.2 Specific Volume and Density 1203.2.2.3 Temperature 1203.2.2.4 Standard Conditions 1213.2.3 Kinematic Properties of a Flow 1223.2.4 Streamlines and Pathlines 1223.2.4.1 FTT: In-Flight Flow Visualization 1243.2.5 Transport Properties of a Fluid 1273.2.5.1 Mass Transport 1283.2.5.2 Momentum Transport 1283.2.5.3 Heat Transport 1283.2.5.4 Coefficient of Viscosity and Sutherland’s Law 1283.3 Types of Aerodynamic Flows 1303.3.1 Continuum and Non-Continuum Flows 1303.3.2 Steady and Unsteady Flows 1303.3.3 Incompressible and Compressible Flows 1313.3.4 Inviscid and Viscous Flows 1323.4 Similarity Parameters 1353.4.1 Mach Number 1363.4.2 Reynolds Number 1373.4.3 Pressure Coefficient 1393.4.4 Force and Moment Coefficients 1393.4.5 Ratio of Specific Heats 1403.4.6 Prandtl Number 1403.4.7 Stanton Number 1413.4.8 Summary of Similarity Parameters 1413.5 A Brief Review of Thermodynamics 1433.5.1 Thermodynamic System and State 1433.5.1.1 Thermodynamic System 1433.5.1.2 Properties of a System, Thermodynamic State, and Processes 1443.5.2 Connecting the Thermodynamic State: The Equation of State 1453.5.2.1 The Ideal Gas 1453.5.2.2 The Ideal Gas Equation of State 1463.5.3 Additional Thermodynamic Properties: Internal Energy, Enthalpy, and Entropy 1483.5.3.1 Internal Energy 1483.5.3.2 Enthalpy 1493.5.3.3 Entropy 1493.5.4 Work and Heat 1503.5.4.1 Work 1503.5.4.2 Heat 1543.5.5 The Laws of Thermodynamics 1553.5.5.1 The Zeroth and Third Laws of Thermodynamics 1553.5.5.2 The First Law of Thermodynamics 1553.5.5.3 The Second Law of Thermodynamics 1563.5.6 Specific Heats of an Ideal Gas 1583.5.7 Isentropic Flow 1623.6 Fundamental Equations of Fluid Motion 1653.6.1 Conservation of Mass: The Continuity Equation 1653.6.2 Newton’s Second Law: The Momentum Equation 1673.6.3 Conservation of Energy: The Energy Equation 1723.6.4 Summary of the Governing Equations of Fluid Flow 1743.7 Viscous Flow 1753.7.1 D’Alembert’s Paradox 1753.7.2 Skin Friction and Shearing Stress 1793.7.3 Laminar and Turbulent Boundary Layers 1803.7.4 Boundary Layer Transition 1843.7.5 Separated Flow 1863.7.6 Skin Friction Drag 189References 193Problems 1944 Airfoils and Wings 1974.1 Introduction 1984.2 Two-Dimensional Lifting Shapes: Airfoils 1984.2.1 Airfoil Nomenclature and Construction 2024.2.2 Airfoil Numbering Systems 2044.2.3 Aerodynamic Forces and Moments 2064.2.4 Airfoil Lift, Drag, and Pitching Moment 2074.2.5 Pressure Coefficient 2094.2.6 Airfoil Lift, Drag, and Moment Curves 2114.2.6.1 Airfoil Lift Curve 2114.2.6.2 Geometric and Absolute Angles-of-Attack 2124.2.6.3 Airfoil Drag Curve 2144.2.6.4 Airfoil Pitching Moment Curve 2164.2.7 Data for Selected Symmetric and Cambered Airfoils 2164.2.8 Comparison of Symmetric and Cambered Airfoils 2224.2.9 FTT: Lift and Drag in Steady, Gliding Flight 2264.3 Three-Dimensional Aerodynamics: Wings 2324.3.1 Finite Wings 2324.3.1.1 Wing Geometry and Nomenclature 2324.3.1.2 Wingtip Vortices, the Wing Vortex System, and Wing Lift 2354.3.1.3 Downwash and Induced Drag 2384.3.1.4 Summary of the Total Drag for a Wing 2434.3.2 Lift and Drag Curves of Finite Wings 2434.3.2.1 Finite Wing Lift Curve 2444.3.2.2 Finite Wing Drag Curve 2464.3.3 High-Lift Devices 2474.3.3.1 Flaps 2474.3.3.2 Leading Edge Devices 2494.3.3.3 Spoilers 2514.4 Theories of Lift 2524.4.1 Theories of Lift: Action and Reaction 2524.4.2 Theories of Lift: Newtonian Theory 2534.4.3 Theories of Lift: Equal Transit Time 2534.4.4 Theories of Lift: Flow Deflection 2544.4.5 Theories of Lift: Pressure and Shear Stress Distributions 2544.4.6 Theories of Lift: “Squashed” Streamtubes 2554.4.7 Theories of Lift: Circulation 2564.4.8 Anton Flettner and His Spinning Cylinders 2584.5 Total Drag 2604.5.1 Drag of the Complete Aircraft 2604.5.1.1 Interference Drag 2624.5.1.2 Protuberance Drag 2634.5.1.3 Drag due to Roughness and Gaps 2634.5.1.4 Trim Drag 2644.5.2 Variation of Drag with Airspeed and Mach Number 2644.6 GTT: Wind Tunnel Testing 2664.6.1 Wind Tunnel Description 2664.6.2 Subsonic Wind Tunnel Velocity-Area Relation 2684.6.3 Types of Wind Tunnels 2694.6.4 Examples of Wind Tunnels 2714.6.4.1 The Whirling Arm 2714.6.4.2 The Wright Brothers’ Wind Tunnel 2724.6.4.3 Variable Density Tunnel 2734.7 GTT: Computational Fluid Dynamics 2774.8 FTT: Aeromodeling 2814.8.1 Stabilized Aeromodeling Methods 2844.8.2 Dynamic Aeromodeling Methods 2854.9 Aerodynamic Stall and Departure 2884.9.1 Stall Definitions 2884.9.2 Aerodynamics of Stall 2914.9.3 Post-Stall Aerodynamics 2944.9.4 Spins 2964.9.5 FTT: Stall, Departure, and Spin Flight Testing 302References 307Problems 3075 Supersonic Flight 3095.1 Introduction 3095.1.1 The Speed of Sound 3105.1.2 The Critical Mach Number and Drag Divergence 3135.1.3 Compressibility Corrections 3165.1.4 The Sound Barrier 3215.1.5 Breaking the Sound Barrier 3225.2 Shock and Expansion Waves 3235.2.1 Isentropic Flow Relations 3245.2.2 Mach Waves 3265.2.3 Shock Waves 3285.2.3.1 Normal Shock Waves 3295.2.3.2 Oblique Shock Waves 3335.2.3.3 FTT: Visualizing Shock Waves in Flight 3345.2.4 Expansion Waves 3375.2.5 Sonic Boom 3395.3 Supersonic Airfoils and Wings 3415.3.1 Lift and Drag of Supersonic Airfoils 3415.3.2 Supercritical Airfoils 3445.3.3 Wings for Supersonic Flight 3465.3.3.1 Thin, Low-Aspect Ratio, Straight Wings 3475.3.3.2 Swept Wings 3495.3.3.3 Delta Wings 3545.3.3.4 Variable-Sweep Wings 3585.3.4 Transonic and Supersonic Area Rule 3635.4 Internal Supersonic Flows 368References 376Problems 3776 Propulsion 3796.1 Introduction 3806.2 The Concept of Propulsive Thrust 3816.3 Propulsive Flows with Heat Addition and Work 3846.3.1 Application of the Continuity Equation to Propulsive Flows 3846.3.2 Application of the Energy Equation to Propulsive Flows 3856.4 Derivation of the Thrust Equations 3876.4.1 Uninstalled Thrust for the Rocket Engine 3886.4.2 Uninstalled Thrust for the Ramjet and Turbojet 3916.4.3 Installed Thrust for an Air-Breathing Engine 3936.4.4 Thrust Equation for a Propeller 3946.4.5 Force Accounting 3986.5 Thrust and Power Curves for Propeller and Jet Propulsion 3996.5.1 FTT: In-Flight Thrust Measurement 4016.6 Air-Breathing Propulsion 4046.6.1 Air-Breathing Propulsion Performance Parameters 4046.6.1.1 Thrust-to-Weight Ratio 4056.6.1.2 Specific Impulse 4056.6.1.3 Specific Fuel Consumption 4076.6.1.4 Propulsive Efficiency 4086.6.2 The Ramjet 4106.6.3 The Gas Generator 4136.6.3.1 The Gas Generator Cycle 4166.6.3.2 Air-Breathing Engines Based on the Gas Generator 4176.6.4 The Turbojet Engine 4186.6.4.1 Ideal Turbojet Thermodynamic Cycle 4186.6.4.2 Turbojet Flow Properties and Thrust 4196.6.4.3 Birth of the Turbojet Engine 4216.6.5 The Turbofan Engine 4236.6.6 The Turboprop and Turboshaft Engines 4266.6.7 Inlets and Nozzles 4286.6.7.1 Inlet Requirements and Total Pressure Recovery 4306.6.7.2 Subsonic Inlets 4306.6.7.3 Supersonic Inlets 4316.6.7.4 Nozzle Requirements and Types 4356.6.7.5 Nozzle Efficiency and Performance Parameters 4356.6.7.6 Thrust Vectoring Nozzles 4386.6.8 The Reciprocating, Piston Engine–Propeller Combination 4386.6.8.1 The Reciprocating, Piston, Internal Combustion Engine 4396.6.8.2 Gasoline-Fueled Internal Combustion Engine Ideal Cycle: The Otto Cycle 4426.6.8.3 The Propeller 4446.6.8.4 The Electric Motor–Propeller Combination 4516.6.9 GTT: The Engine Test Cell and Test Stand 4526.6.10 FTT: Flying Engine Testbeds 4546.7 Rocket Propulsion 4556.7.1 Thrust Chamber Thermodynamics 4566.7.2 Rocket Propulsion Performance Parameters 4586.7.2.1 Thrust Chamber Mass Flow Rate 4586.7.2.2 Characteristic Exhaust Velocity 4586.7.2.3 Effective Exhaust Velocity 4596.7.2.4 Thrust 4606.7.2.5 Thrust Coefficient 4616.7.2.6 Specific Impulse 4626.7.3 Liquid-Propellant Rocket Propulsion 4646.7.4 Solid-Propellant Rocket Propulsion 4686.7.5 Rocket Nozzles 471References 473Problems 4747 Performance 4777.1 Introduction 4787.2 Air Data System Measurements 4807.2.1 The Pitot-Static System 4817.2.2 Measurement of Altitude 4827.2.3 Measurement of Airspeed 4847.2.3.1 Subsonic, Incompressible Flow 4867.2.3.2 Subsonic, Compressible Flow 4867.2.3.3 Supersonic, Compressible Flow 4877.2.4 Types of Airspeed 4907.2.4.1 True Airspeed 4907.2.4.2 Equivalent Airspeed 4917.2.4.3 Calibrated Airspeed 4927.2.4.4 Indicated Airspeed 4937.2.4.5 Airspeed Summary and Conversions 4947.2.5 Pitot-Static System Errors 4957.2.5.1 Total Pressure Position Error 4967.2.5.2 Static Pressure Position Error 4977.2.6 Temperature Measurement 4987.2.7 FTT: Altitude and Airspeed Calibration 5017.3 The V-n Diagram 5077.4 The Equations of Motion for Unaccelerated Flight 5127.5 Level Flight Performance 5147.5.1 Thrust Required in Level, Unaccelerated Flight 5147.5.2 Velocity and Lift Coefficient for Minimum Thrust Required 5197.5.3 Thrust Available and Maximum Velocity 5207.5.4 Power Required and Power Available 5247.5.5 Velocity and Lift Coefficient for Minimum Power Required 5277.6 Range and Endurance 5307.6.1 Definitions of Range and Endurance 5317.6.2 Range and Endurance for a Propeller-Driven Aircraft 5327.6.3 Range and Endurance for a Jet-Powered Aircraft 5347.7 FTT: Cruise Performance 5367.8 Climb Performance 5447.8.1 Maximum Angle and Maximum Rate of Climb 5447.8.2 Time to Climb 5477.8.3 FTT: Climb Performance 5507.9 Glide Performance 5537.10 Energy Concepts 5567.10.1 FTT: Specific Excess Power 5667.11 Turn Performance 5697.11.1 The Level Turn 5697.11.1.1 Level Turn Performance Equations 5707.11.1.2 The Turning Stall 5757.11.1.3 The Turn Performance Chart 5777.11.2 Turn Performance and the V-n Diagram 5807.11.3 FTT: Turn Performance 5817.12 Takeoff and Landing Performance 5847.12.1 Takeoff Distance 5887.12.2 Landing Distance 5907.12.3 FTT: Takeoff Performance 591References 595Problems 5968 Stability and Control 5998.1 Introduction 6008.2 Aircraft Stability 6018.2.1 Static Stability 6028.2.2 Dynamic Stability 6028.3 Aircraft Control 6038.3.1 Flight Controls 6048.3.2 Stick-Fixed and Stick-Free Stability 6058.4 Stability and Control Nomenclature and Sign Conventions 6068.5 Aircraft Weight and Balance 6108.5.1 Aircraft Weight 6108.5.2 Aircraft Balance and Center-of-Gravity Location 6118.5.3 Weight and Balance Computation 6128.6 Longitudinal Static Stability 6168.6.1 The Pitching Moment Curve 6178.6.2 Configurations with Longitudinal Static Stability and Balance 6208.6.3 Contributions of Aircraft Components to the Pitching Moment 6258.6.3.1 Wing Contribution to the Pitching Moment 6258.6.3.2 Tail Contribution to the Pitching Moment 6288.6.3.3 Combined Contributions of the Wing and Tail to the Pitching Moment 6338.6.3.4 Fuselage Contribution to the Pitching Moment 6368.6.3.5 Propulsion System Contribution to the Pitching Moment 6378.6.4 Neutral Point and Static Margin 6388.7 Longitudinal Control 6428.7.1 Elevator Effectiveness and Control Power 6438.7.2 New Trim Condition Due to Elevator Deflection 6488.7.3 Elevator Hinge Moment 6508.7.4 Stick-Free Longitudinal Static Stability 6528.7.5 Longitudinal Control Forces 6538.7.6 FTT: Longitudinal Static Stability 6578.8 Lateral-Directional Static Stability and Control 6628.8.1 Directional Static Stability 6638.8.2 Directional Control 6688.8.3 Lateral Static Stability 6708.8.4 Roll Control 6758.8.5 FTT: Lateral-Directional Static Stability 6768.9 Summary of Static Stability and Control Derivatives 6818.10 Dynamic Stability 6828.10.1 Long Period or Phugoid 6838.10.2 Short Period 6858.10.3 Dutch Roll 6868.10.4 Spiral Mode 6898.10.5 Roll Mode 6908.10.6 FTT: Longitudinal Dynamic Stability 6918.11 Handling Qualities 6958.11.1 FTT: Variable Stability Aircraft 6968.12 FTT: First Flight 700References 704Problems 7049 Hypersonic Flight 7079.1 Introduction 7089.1.1 What Is Hypersonic? 7099.1.2 Differences Between Supersonic and Hypersonic Flows 7099.2 Hypersonic Vehicles 7109.2.1 Blunt and Slender Hypersonic Bodies 7109.2.2 Types of Hypersonic Vehicles 7119.2.2.1 Ballistic Entry Capsule 7119.2.2.2 Lifting Entry Vehicle 7129.2.2.3 Atmospheric Cruise or Accelerator Vehicle 7139.2.3 Hypersonic Trajectories 7139.3 Effects of High Mach Number 7159.3.1 Shock Waves and the Shock Layer 7169.3.2 Mach Number Independence 7179.3.3 The Hypersonic Similarity Parameter 7209.3.4 Curved Shock Waves 7219.3.5 GTT: Hypersonic Ground Testing 7239.4 Impact Theories 7259.4.1 Newtonian Impact Theory 7259.4.2 Derivation of Newton’s Sine-Squared Law 7269.4.3 Lift and Drag Over a Flat Plate Using Newtonian Theory 7279.4.4 Modified Newtonian Theory 7319.4.5 Tangent-Wedge and Tangent-Cone Methods 7329.5 Effects of High Temperature 7349.5.1 High-Temperature Effects on Air 7349.5.2 Temperature Effects on the Ratio of Specific Heats 7369.5.3 Hypersonic Plasma 7389.5.4 Hypersonic Heating 7409.5.4.1 Thermal Conduction 7419.5.4.2 Convection 7419.5.4.3 Radiation 7429.5.5 The Thermal Boundary Layer 7429.5.6 Reynolds Analogy and the Stanton Number 7449.5.7 Body Shape to Minimize Hypersonic Heating 7469.6 Effects of Low Density 7469.7 Hypersonic Viscous Flow 7499.7.1 Hypersonic Viscous Effects 7499.7.1.1 Increase in Skin Friction and Heat Transfer 7499.7.1.2 Displacement Effect 7499.7.1.3 Viscous Interaction 7499.7.1.4 Thick Boundary Layers and Shock Interactions 7499.7.2 The Hypersonic Laminar Boundary Layer 7509.7.3 Displacement Thickness and Viscous Interaction 7519.8 FTT: Hypersonic Flight 7539.9 Waveriders 7619.9.1 Compression Lift 7639.9.2 The Caret Wing Waverider 7649.9.3 Viscous-Optimized Waveriders 7669.10 Hypersonic Propulsion 7689.10.1 The Scramjet 7689.10.2 FTT: Scramjet Flight Test 7729.10.2.1 Russian CIAM Scramjet Flight Test 7729.10.2.2 NASA X-43A Hyper-X 7749.10.2.3 US X-51A Scramjet Engine Demonstrator 7759.10.3 Hypersonic Combined-Cycle Propulsion 776References 778Problems 77910 Spaceflight 78110.1 Introduction 78210.1.1 The Space Environment – Where Does Space Begin? 78210.1.2 Space Radiation, Meteors, and Space Debris 78210.2 Spacecraft 78410.2.1 Classification of Spacecraft 78410.2.1.1 Orbiter Spacecraft 78510.2.1.2 Flyby Spacecraft 78710.2.1.3 Lander Spacecraft 78810.2.1.4 Atmospheric Spacecraft 79210.2.1.5 Manned Spacecraft 79310.2.2 Parts of a Spacecraft 79710.3 Space Access Systems 80010.3.1 Expendable Rockets 80110.3.2 Reusable Rockets 80310.3.3 Air-Launched Rockets 80610.4 Space Launch 80710.4.1 The Rocket Equation 80710.4.2 Gravity and Drag Losses 81010.4.3 Launch Vehicle Parameters 81110.4.4 Rocket Staging 81210.5 Orbital Mechanics 81610.5.1 Newton’s Laws of Motion and Universal Gravitation 81610.5.1.1 Newton’s Three Laws of Motion 81610.5.1.2 Newton’s Universal Law of Gravitation 81710.5.2 Kepler’s Laws of Planetary Motion 81810.5.2.1 Kepler’s First Law (Law of Ellipses): The orbit of each planet is an ellipse, with the Sun at a focus 81910.5.2.2 Kepler’s Second Law (Law of Equal Areas): The line joining the planet to the Sun sweeps out equal areas in equal times 82010.5.2.3 Kepler’s Third Law (Law of Harmonies): The square of the period of a planet is proportional to the cube of the semi-major axis of the elliptical orbit 82010.5.3 Orbital Elements 82010.5.3.1 Eccentricity 82110.5.3.2 Semi-major Axis 82210.5.3.3 Inclination 82210.5.3.4 Longitude of the Ascending Node 82210.5.3.5 Argument of Perigee 82210.5.3.6 True Anomaly 82210.5.4 The Orbit Equation 82310.5.5 Types of Orbits and Trajectories 82610.5.5.1 The Elliptical Orbit 82810.5.5.2 The Circular Orbit 82910.5.5.3 The Parabolic Orbit 82910.5.5.4 The Hyperbolic Orbit 83010.5.6 The Vis-Viva Equation 83110.5.6.1 Energy and Eccentricity 83210.5.6.2 Lagrange Points 83310.5.7 Orbital Velocities 83410.5.7.1 Circular Orbit Velocity 83410.5.7.2 Escape Velocity 83510.5.8 Earth Orbits 83610.5.8.1 Low Earth Orbit (LEO) 83710.5.8.2 Sun-Synchronous Orbit (SSO) 83710.5.8.3 Medium Earth Orbit (MEO) 83710.5.8.4 Geostationary Earth Orbit (GEO) 83810.5.8.5 Parking Orbit 83810.5.8.6 Transfer Orbits 83810.6 Atmospheric Entry 84110.6.1 Atmospheric Entry Equations of Motion 84210.6.2 Ballistic Entry 84310.6.3 Lifting Entry 846References 848Problems 849Appendix 851A Constants 851B Conversions 852A Properties of the 1976 U.S. Standard Atmosphere 853Index 000