Infrared and Raman Spectroscopy in Forensic Science
Inbunden, Engelska, 2012
Av John M. Chalmers, Howell G. M. Edwards, Michael D. Hargreaves, U.K) Chalmers, John M. (ICI Technology, Wilton Research Centre, Wilton, Howell G. M. (University of Bradford) Edwards, John M Chalmers, Howell G M Edwards, Michael D Hargreaves
2 559 kr
Produktinformation
- Utgivningsdatum2012-02-20
- Mått194 x 250 x 36 mm
- Vikt1 345 g
- FormatInbunden
- SpråkEngelska
- Antal sidor656
- FörlagJohn Wiley & Sons Inc
- ISBN9780470749067
Tillhör följande kategorier
John Chalmers, recently completed post-doctoral research with Professor Edwards at the University of Bradford. He has just joined Litethru, a company based in Daresbury, involved in developing Raman instrumentation for non-invasive analysis.Howell Edwards is Director of Research in the School of Life Sciences at Bradford University. His studies in the application of Raman spectroscopy to biological / geological interfaces have been extended to a space environment and he was an adjunct scientist for the Mars Express Beagle 2 lander mission, and a contributor to the ESA FOTON 12-Biopan international consortium for the analysis of Martian lithic analogues. He has published over 430 research papers in Raman spectroscopy and is on the Editorial Advisory Boards of the Journal of Raman Spectroscopy, Spectrochimica Acta: Biomolecular Spectroscopy, the Internet Journal of Vibrational Spectroscopy and the Asian Journal of Spectroscopy. Currently, he has research collaborations with groups in Spain, France, Denmark, Germany, Australia, Brazil and the USA.He has lectured widely on Raman spectroscopy and its applications. Professor Edwards is a national committee member of the Molecular Spectroscopy Group of the Royal Society of Chemistry and also of the UK Astrobiology Panel.Mike Hargreaves is an independent consultant in the field of vibrational spectroscopy. He left ICI in 1997 after 22 years, serving as a Business Research Associate in the Science Support Group of ICI Technology. He held the position of chairman of the UK Infrared and Raman Discussion Group (IRDG) for a number of years and is current chairman of the RSC (Royal Society of Chemistry) Molecular Spectroscopy Subject Group. He is a member of the Association of British Spectroscopists (ABS) Trust, and is a Fellow of the Royal Society of Chemistry. In 1994, he received the Williams-Wright Award from the Coblentz Society and in 2008 was President of the Society for Applied Spectroscopy.
- About the Editors xxiList of Contributors xxiiiPreface xxviiSection I: Introduction 11 Introduction and Scope 3John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves1.1 Historical Prologue 31.2 The Application of Infrared Spectroscopy and Raman Spectroscopy in Forensic Science 5References 72 Vibrational Spectroscopy Techniques: Basics and Instrumentation 9John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves2.1 Introduction 92.2 Vibrational Spectroscopy Techniques 92.2.1 The basics and some comparisons 92.2.2 Quantitative and classification analyses 162.2.3 Reference databases and search libraries/algorithms 202.3 Vibrational Spectroscopy: Instrumentation 222.3.1 Spectrometers 222.3.2 Vibrational spectroscopy–microscopy systems 282.3.3 Fibre optics and fibre-optic probes 342.3.4 Remote, portable, handheld, field-use, and stand-off vibrational spectroscopy instrumentation 352.4 Closing Remarks 40References 403 Vibrational Spectroscopy Sampling Techniques 45John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves3.1 Introduction 453.2 Vibrational Spectroscopy: Sampling Techniques 473.2.1 Raman spectroscopy 473.2.2 Mid-infrared spectroscopy 583.2.3 Near-infrared spectroscopy: sampling techniques 763.2.4 Terahertz/far-infrared spectroscopy: sampling techniques 793.3 Closing Remarks 81Acknowledgements 81References 82Section II: Criminal Scene 874 Criminal Forensic Analysis 89Edward G. Bartick4.1 Introduction 894.2 Forensic Analysis 904.3 General Use of IR and Raman Spectroscopy in Forensic Analysis 914.3.1 Progression of infrared spectroscopy development in forensic analysis 914.3.2 Progression of Raman spectroscopy development in forensic analysis 914.3.3 Sampling methods 914.4 Applications of Evidential Material Analysis 934.4.1 Polymers 934.4.2 Drugs 1014.4.3 Explosives 1034.4.4 Fingerprint analysis 1044.5 Summary and Future Direction 105Acknowledgements 106References 1064.1 Forensic Analysis of Hair by Infrared Spectroscopy 111Kathryn S. Kalasinsky4.1.1 Introduction 1114.1.2 Basic Forensic Hair Analysis 1134.1.3 Uniqueness of Hair to Chemical Analysis 1144.1.4 Mechanism for Chemical Substance Incorporation into Hair 1154.1.5 Applications 1184.1.6 Disease Diagnosis 1194.1.7 Summary 119References 1194.2 Raman Spectroscopy for Forensic Analysis of Household and Automotive Paints 121Steven E.J. Bell, Samantha P. Stewart and W.J. Armstrong4.2.1 Introduction 1214.2.2 Paint Composition 1214.2.3 Analysis of Resin Bases 1224.2.4 White Paint 1254.2.5 Coloured Household Paints 1264.2.6 Multi-Layer Paints 1304.2.7 Automotive Paint 1324.2.8 Conclusions 135References 1354.3 Raman Spectroscopy for the Characterisation of Inks on Written Documents 137A. Guedes and A.C. Prieto4.3.1 Introduction 1374.3.2 Experimental 1394.3.3 Chemical Differences in the Composition of Writing Inks through Time, and Modern Inks: Major Groups 1414.3.4 Ink Discrimination 1444.3.5 Forensic Test 1464.3.6 Conclusions 149References 1494.4 Forensic Analysis of Fibres by Vibrational Spectroscopy 153Peter M. Fredericks4.4.1 Introduction 1534.4.2 Infrared Spectroscopy 1544.4.3 Raman Spectroscopy 1624.4.4 Data Analysis 1654.4.5 Conclusions 167Acknowledgement 168References 1684.5 In Situ Crime Scene Analysis 171Edward G. Bartick4.5.1 Introduction 1714.5.2 Instrumentation 1724.5.3 Applications 1774.5.4 Conclusion 183Acknowledgements 183References 1834.6 Raman spectroscopy gains currency 185R. Withnall, A. Reip and J. Silver4.6.1 Introduction 1854.6.2 Banknotes 1864.6.3 Postage Stamps 1944.6.4 Potential Forensic Applications 1984.6.5 Conclusions 203Acknowledgements 203References 203Section III: Counter Terrorism and Homeland Security 2055 Counter Terrorism and Homeland Security 207Vincent Otieno-Alego and Naomi Speers5.1 Introduction 2075.2 Infrared and Raman Spectroscopy for Explosives Identification 2085.2.1 Level of chemical identification 2095.2.2 Capability to analyse a large range of explosives and related chemicals 2105.2.3 Other positive features of IR and Raman spectroscopy in explosive analysis 2115.2.4 Case Studies – Example 1 2115.3 Portable IR and Raman Instruments 2135.3.1 Case Studies – Example 2 2145.4 Post-Blast Examinations 2175.5 Detection of Explosives in Fingerprints 2175.6 Spatially Offset Raman Spectroscopy 2185.6.1 Applications of SORS in explosive analysis 2205.7 Terahertz Spectroscopy of Explosives 2215.7.1 Sampling modes and sample preparation 2225.7.2 THz spectroscopy of explosives and explosive related materials 2235.8 Summary 226Glossary 227References 2285.1 Tracing Bioagents – a Vibrational Spectroscopic Approach for a Fast and Reliable Identification of Bioagents 233P. Rösch, U. Münchberg, S. Stöckel and J. Popp5.1.1 Introduction 2335.1.2 Toxins 2365.1.3 Viruses 2385.1.4 Bacteria 2385.1.4.1 Bulk samples 2385.1.4.2 Single bacterium identification 2405.1.5 Conclusion 246Acknowledgement 246References 2465.2 Raman Spectroscopic Studies of Explosives and Precursors: Applications and Instrumentation 251Mary L. Lewis, Ian R. Lewis and Peter R. Griffiths5.2.1 Background 2515.2.2 Introduction 2525.2.3 UV Excited Raman Studies of Explosives 2535.2.4 FT-Raman Studies of Explosives 2555.2.5 Neither FT-Raman nor Traditional Dispersive Raman 2585.2.6 Surface Enhanced Raman and Surface Enhanced Resonance Raman Studies of Explosives 2585.2.7 Dispersive Raman Studies of Explosives 2595.2.8 Compact Dispersive Raman Spectrometers for the Study of Explosives 2605.2.9 Spatially Offset Raman Spectroscopy 2655.2.10 Stand-Off Raman of Explosives 2665.2.11 Raman Microscopy and Imaging 2665.2.12 Vehicle-Mounted Raman Analysers 2675.2.13 Classification Schema for Explosives 2685.2.14 Summary 268References 2695.3 Handheld Raman and FT-IR Spectrometers 275Michael D. Hargreaves, Robert L. Green, Wayne Jalenak, Christopher D. Brown and Craig Gardner5.3.1 Introduction 2755.3.2 Handheld/Portable Raman and FT-IR Devices 2765.3.3 Explosives 2765.3.4 Tactical Considerations 2775.3.5 Sample Considerations 2795.3.6 Raman and FT-IR Spectroscopy Explosive Identification Capabilities 2805.3.7 Performance Characterisation 2855.3.8 Summary 285Disclaimer 286References 2865.4 Non-Invasive Detection of Concealed Liquid and Powder Explosives using Spatially Offset Raman spectroscopy 289Kevin Buckley and Pavel Matousek5.4.1 Introduction 2895.4.2 Discussion and Examples 2905.4.3 Summary 293References 2945.5 Terahertz Frequency Spectroscopy and its Potential for Security Applications 295A.D. Burnett, A.G. Davies, P. Dean, J.E. Cunningham and E.H. Linfield5.5.1 Introduction 2955.5.2 Terahertz Frequency Radiation 2965.5.3 Terahertz Time-Domain Spectroscopy 2965.5.4 Examples of the Use of THz Spectroscopy to Detect Materials of Security Interest 2985.5.5 Conclusions and Future Outlook 309Acknowledgements 309References 310Section IV: Drugs and Drugs of Abuse 3156 Raman Spectroscopy of Drugs of Abuse 317Steven E.J. Bell, Samantha P. Stewart and S.J. Speers6.1 Introduction 3176.2 Bulk Drugs 3176.2.1 General introduction 3176.2.2 Experimental considerations 3196.2.3 Laboratory-based methods 3226.2.4 Raman outside the laboratory 3266.3 Trace Detection 3286.3.1 Drug microparticles 3286.3.2 Surface-enhanced Raman spectroscopy 3296.4 Conclusions 335References 3366.1 Drugs of Abuse – Application of Handheld FT-IR and Raman Spectrometers 339Michael D. Hargreaves6.1.1 Introduction 3396.1.2 Advantages of Vibrational Spectroscopy 3396.1.3 General Drugs of Abuse – Introduction 3406.1.4 Vibrational Spectroscopy 3406.1.5 Analysis of Street Samples 3436.1.6 New Narcotic Threats 3446.1.7 Identification of Drug Precursors 3446.1.8 Case Studies 3466.1.9 Conclusion 347Disclaimer 348References 3486.2 Non-Invasive Detection of Illicit Drugs Using Spatially Offset Raman Spectroscopy 351Kevin Buckley and Pavel Matousek6.2.1 Introduction 3516.2.2 Application Examples 3526.2.3 Summary 356References 3566.3 Detection of Drugs of Abuse Using Surface Enhanced Raman Scattering 357Karen Faulds and W. Ewen Smith6.3.1 Introduction 3576.3.2 Substrates 3586.3.3 Direct Detection 3606.3.4 Indirect Detection 3636.3.5 Conclusions 365References 365Section V: Art 3677 Vibrational Spectroscopy as a Tool for Tracing Art Forgeries 369A. Deneckere, P. Vandenabeele and L. Moens7.1 Introduction 3697.2 How to Trace Art Forgeries with Vibrational Spectroscopy? 3717.2.1 Detection of anachronisms 3717.2.2 Comparing with the artist’s palette 3757.2.3 Impurities 3777.3 Conclusion 380Acknowledgements 380References 3807.1 Identification of Dyes and Pigments by Vibrational Spectroscopy 383Juan Manuel Madariaga7.1.1 Introduction 3837.1.2 Review of the Scientific Literature 3847.1.3 Databases of Reference Materials 3867.1.4 FT-IR and Raman Spectroscopy Applications 390References 3967.2 The Vinland Map: An Authentic Relic of Early Exploration or a Modern Forgery – Raman Spectroscopy in a Pivotal Role? 401Howell G.M. Edwards7.2.1 Introduction 4017.2.2 The Scientific Analysis of the Vinland Map and Tartar Relation 4037.2.3 Raman Microspectroscopic Study 403References 4077.3 Study of Manuscripts by Vibrational Spectroscopy 409Lucia Burgio7.3.1 Introduction 4097.3.2 Why Raman Microscopy? 4107.3.3 Dating and Authentication 4117.3.4 Provenance and Trade Routes 4137.3.5 Infrared Spectroscopy 415Acknowledgements 415References 415Section VI: Archaeology and Mineralogy 4198 Infrared and Raman Spectroscopy: Forensic Applications in Mineralogy 421J. Jehlicka8.1 Introduction 4218.2 Applications of Raman Spectroscopy for Provenancing 4238.3 Raman Spectroscopy of Minerals 4238.3.1 Class 1: Elements 4238.3.2 Minerals from other groups of the mineralogical classification system 4268.4 Opals 4288.5 Natural Glass 4288.6 Meteorites 4298.7 Identification and Provenancing of Gemstones 4308.7.1 Synthetic gemstones 4318.7.2 Semi-precious minerals 4318.7.3 Garnets 4318.8 Common Minerals 4338.8.1 Clays 4338.9 Databases 4348.10 Identification of Inclusions in Minerals 4348.11 Raman Mapping Techniques 4368.12 Analyses Outdoors and On Site 4378.13 Applications of Raman Spectroscopy to the Provenancing of Rocks 4388.14 Summary 438Acknowledgements 439References 4398.1 Identification of Ivory by Conventional Backscatter Raman and SORS 447Michael D. Hargreaves and Howell G.M. Edwards8.1.1 Introduction 4478.1.2 Application of Raman Spectroscopy 4498.1.3 Conclusions 453Disclaimer 453References 4548.2 Applications to the Study of Gems and Jewellery 455Lore Kiefert, Marina Epelboym, Hpone-Phyo Kan-Nyunt and Susan Paralusz8.2.1 Introduction 4558.2.2 Case Study Example I: Mid-Infrared and Raman Spectroscopy of Diamonds 4568.2.3 Case Study Example II: Detection of Fissure Fillings in Emeralds 4588.2.4 Case Study Example III: The Raman Identification of Turquoise 4648.2.5 Summary 466Acknowledgements 467References 4678.3 Raman Spectroscopy of Ceramics and Glasses 469Paola Ricciardi and Philippe Colomban8.3.1 Introduction 4698.3.2 How to Discriminate Between Genuine Artifacts and Copies and Fakes 4708.3.3 On-Site Measurements and Procedures 4728.3.4 Case Studies 4748.3.5 Conclusions 478References 4788.4 Raman Spectroscopy at Longer Excitation Wavelengths Applied to the Forensic Analysis of Archaeological Specimens: A Novel Aspect of Forensic Geoscience 481Howell G.M. Edwards8.4.1 Introduction 4818.4.2 Experimental 4868.4.3 Results and Discussion 4868.4.4 Human Tissues and Skeletal Remains 4958.4.5 Conclusions 509Acknowledgements 509References 510Section VII: Counterfeit Consumer Products 5139 Counterfeit Consumer Products 515Andrew J. O’Neil9.1 Background 5159.2 Anti-Counterfeiting Organisations 5159.3 Definition of a Counterfeit Product 5169.4 Counterfeit Product Spectroscopic Analysis 5169.4.1 Counterfeit alcoholic beverages and whisky 5179.4.2 Counterfeit stamps 5189.4.3 Counterfeit currency 5199.4.4 Counterfeit medicines 5209.5 Case Studies Using Mid-infrared, Raman and Near-infrared Spectroscopies and NIR Multispectral Imaging 5299.6 Case Study I: Counterfeit Clothing 5329.6.1 Case study Ia: counterfeit Burberry Classic Check Scarf 5329.6.2 Case study Ib: counterfeit New Era 59fifty baseball caps 5329.7 Case Study II: Counterfeit Aftershave 5369.8 Case Study III: Counterfeit Medicines 5409.8.1 Near-infrared spectrometry 5429.8.2 Raman spectrometry 5459.8.3 NIR Multispectral Imaging 5479.9 Case Study IV: Counterfeit Product Packaging 5499.9.1 ATR/FT-IR Spectroscopy 5499.10 Case Study V: Counterfeit Royal Mail First Class Stamps 5519.10.1 Near-infrared spectroscopic analysis 5519.10.2 Near-infrared multispectral imaging 5519.11 Case Study VI: Counterfeit Bank of England Banknotes 5529.11.1 ATR/FT-IR Spectroscopic Analysis 5529.11.2 NIR Multispectral Imaging 5559.12 Conclusion 555References 5579.1 Raman Spectroscopy for the Analysis of Counterfeit Tablets 561Kaho Kwok and Lynne S. Taylor9.1.1 The Pharmaceutical Counterfeiting Problem 5619.1.2 Analytical Techniques to Detect Counterfeit Products 5629.1.3 Using Raman Spectroscopy to Characterise Genuine and Counterfeit Tablets–A Case Study 5639.1.4 Conclusions 571Acknowledgements 571References 5719.2 Examination of Counterfeit Pharmaceutical Labels 573Mark R. Witkowski and Mary W. Carrabba9.2.1 Introduction 5739.2.2 Counterfeit Packaging Analysis 5749.2.3 Case Study I: Counterfeit Lipitor Ò Labels 5749.2.4 Case Study II: Counterfeit Zyprexa Ò Labels 5789.2.5 Conclusion 581Disclaimer 582Acknowledgements 582References 5829.3 Vibrational Spectroscopy for “Food Forensics” 583Victoria L. Brewster and Royston Goodacre9.3.1 Introduction 5839.3.2 Adulteration 5849.3.3 Provenance 5879.3.4 Food Spoilage 5879.3.5 Micro-Organism Identification 5889.3.6 Conclusion 589Acknowledgements 589References 5899.4 Infrared Spectroscopy for the Detection of Adulteration in Foods 593Banu Özen and Figen Tokatli9.4.1 Introduction 5939.4.2 Adulteration of Food Products and Application of IR Spectroscopy in the Detection of Adulteration 5949.4.3 Case Study: Adulteration of Extra Virgin Olive Oils with Refined Hazelnut Oil 5969.4.4 Summary 599References 599Index 603
Du kanske också är intresserad av
Life in Extreme Environments
Guido di Prisco, Howell G. M. Edwards, Josef Elster, Ad H. L. Huiskes, Guido (National Research Council of Italy) di Prisco, Howell G. M. (University of Bradford) Edwards, Czech Republic) Elster, Josef (University of South Bohemia, Ad H. L. (Royal Netherlands Institute for Sea Research) Huiskes, Guido Di Prisco, Howell G M Edwards, Ad H L Huiskes
769 kr
Life in Extreme Environments
Guido di Prisco, Howell G. M. Edwards, Josef Elster, Ad H. L. Huiskes, Guido (National Research Council of Italy) di Prisco, Howell G. M. (University of Bradford) Edwards, Czech Republic) Elster, Josef (University of South Bohemia, Ad H. L. (Royal Netherlands Institute for Sea Research) Huiskes, Guido Di Prisco, Howell G M Edwards, Ad H L Huiskes
1 919 kr