Handbook of Composites from Renewable Materials, Nanocomposites
Science and Fundamentals
Inbunden, Engelska, 2017
Av Vijay Kumar Thakur, Manju Kumari Thakur, Michael R. Kessler, Michael R Kessler
3 999 kr
Produktinformation
- Utgivningsdatum2017-06-02
 - Mått170 x 257 x 41 mm
 - Vikt1 406 g
 - FormatInbunden
 - SpråkEngelska
 - SerieHandbook of Composites from Renewable Materials
 - Antal sidor736
 - FörlagJohn Wiley & Sons Inc
 - ISBN9781119223818
 
Tillhör följande kategorier
Vijay Kumar Thakur is a Lecturer in the School of Aerospace, Transport and Manufacturing Engineering, Cranfield University, UK. Previously he had been a Staff Scientist in the School of Mechanical and Materials Engineering at Washington State University, USA. He spent his postdoctoral study in Materials Science & Engineering at Iowa State University, USA, and gained his PhD in Polymer Chemistry (2009) at the National Institute of Technology, India. He has published more than 90 SCI journal research articles in the field of polymers/materials science and holds one US patent. He has also published about 25 books and 33 book chapters on the advanced state-of-the-art of polymers/materials science with numerous publishers, including Wiley-Scrivener.Manju Kumar Thakur has been working as an Assistant Professor of Chemistry at the Division of Chemistry, Govt. Degree College Sarkaghat Himachal Pradesh University, Shimla, India since 2010. She received her PhD in Polymer Chemistry from the Chemistry Department at Himachal Pradesh University. She has deep experience in the field of organic chemistry, biopolymers, composites/ nanocomposites, hydrogels, applications of hydrogels in the removal of toxic heavy metal ions, drug delivery etc. She has published more than 30 research papers in peer-reviewed journals, 25 book chapters and co-authored five books all in the field of polymeric materials. Michael R. Kessler is a Professor and Director of the School of Mechanical and Materials Engineering at Washington State University, USA. He is an expert in the mechanics, processing, and characterization of polymer matrix composites and nanocomposites. His honours include the Army Research Office Young Investigator Award, the Air Force Office of Scientific Research Young Investigator Award, the NSF CAREER Award, and the Elsevier Young Composites Researcher Award from the American Society for Composites. He has more than 150 journal articles and 5800 citations, holds 6 patents, published 5 books on the synthesis and characterization of polymer materials, and presented at least 200 talks at national and international meetings.
- Preface xxi1 Preparation, Characterization, and Applications of Nanomaterials (Cellulose, Lignin, and Silica) from Renewable (Lignocellulosic) Resources 1K.G. Satyanarayana, Anupama Rangan, V.S. Prasad and Washington Luiz Esteves Magalhaes1.1 Introduction 21.1.1 Cellulose and Nanocellulose 31.1.1.1 Types of Nanocellulose 51.1.2 Lignin and Nanolignin 71.1.3 Silica and Nanosilica 71.2 Preparation of Nanomaterials 101.2.1 Nanocellulose from Lignocellulosic Materials 101.2.1.1 Mechanical Shearing and Grinding 111.2.1.2 Steam Explosion/High-Pressure Homogenization 121.2.1.3 Chemical Methods (Acid Hydrolysis, Alkaline Treatment and Bleaching) 161.2.1.4 Ultrasonication 171.2.1.5 Other Methods 181.2.1.6 Functionalized Nanocellulose from Fibers 201.2.2 Nanolignin 211.2.2.1 Precipitation Method 221.2.2.2 Chemical Modification 221.2.2.3 Electro Spinning Followed by Surface Modification 221.2.2.4 Freeze Drying Followed by Thermal Stabilization and Carbonization 221.2.2.5 Supercritical Antisolvent Technology 231.2.2.6 Chemomechanical Methods 231.2.2.7 Nanolignin by Self-Assembly 231.2.2.8 Lignin Nanocontainers by Miniemulsion Method 231.2.2.9 Template-Mediated Synthesis 241.2.3 Nanosilica 251.2.3.1 Nanosilica Obtained from Plants 251.2.3.2 Enzymatic Crystallization of Amorphous Nanosilica 271.3 Characterization of Nanomaterials 271.3.1 Characterization of Nanocellulose 291.3.1.1 Structure and Morphology of NC 291.3.1.2 Physical Properties (Dimensions, Density, Electrical, Crystallinity, and Any Other) 331.3.1.3 Mechanical Properties 361.3.2 Characterization of Lignin Nanoparticles 371.3.2.1 Morphology of Lignin Nanoparticles 381.3.2.2 Thermal Analysis 391.3.3 Other Methods 391.3.4 Characterization of Nanosilica 391.4 Applications and Market Aspects 451.4.1 Nanocellulose 451.4.1.1 Biomedical Applications 461.4.1.2 Dielectric Materials 461.4.1.3 In Composite Manufacturing for Various Applications 461.4.1.4 Advanced Functional Materials 471.4.2 Nanolignin 491.4.3 Nanosilica 511.4.3.1 In Composites 511.4.3.2 Nanosilica in Nacre Composite 521.4.3.3 Encapsulation of Living Cells by Nanosilica 521.5 Concluding Remarks and Challenges Ahead 54Acknowledgments 55References 552 Hydrogels and its Nanocomposites from Renewable Resources: Biotechnological and Biomedical Applications 67B. Manjula, A. Babul Reddy, T. Jayaramudu, E.R. Sadiku, S.J. Owonubi, Oluranti Agboola and Tauhami Mokrani2.1 Introduction 672.2 Hydrogels from Renewable Resources 712.3 Hydrogel Technical Features 722.4 Nanocomposite Hydrogels 722.4.1 Polymer-Clay-Based Nanocomposite Hydrogels 752.4.2 Poly(ethylene Oxide)–Silicate Nanocomposite Hydrogels 762.4.3 Poly(acryl Amide) and Poly(vinyl Alcohol)–Silicate-Based Nanocomposite Hydrogels 772.5 Nanocomposite Hydrogels with Natural Polymers 792.6 Classifications of Hydrogels 802.7 Applications of Hydrogels as Biomaterials 822.7.1 Hydrogels for Drug Delivery Applications 822.7.2 Hydrogels for Tissue-Engineering Scaffolds 842.7.3 Hydrogels for Contact Lens 852.7.4 Hydrogels for Cell Encapsulation 852.7.5 Artificial Muscles and Nerve Regeneration 862.8 Conclusions 87Acknowledgment 88References 883 Preparation of Chitin-Based Nanocomposite Materials Through Gelation with Ionic Liquid 97Kazuya Yamamoto and Jun-ichi Kadokawa3.1 Introduction 983.2 Dissolution and Gelation of Chitin with Ionic Liquid 1003.3 Fabrication of Self-Assembled Chitin Nanofibers by Regeneration from the Chitin Ion Gels 1033.4 Preparation of Nanocomposite Materials from Chitin Nanofibers 1043.5 Conclusion 114References 1154 Starch-Based Bionanocomposites 121Abbas Dadkhah Tehrani, Masoumeh Parsamanesh and Ali Bodaghi4.1 Introduction 1214.2 Nanocomposites 1224.3 Starch Structural Features 1234.4 Starch-Based Bionanocomposites 1244.4.1 Starch Silicate Nanocomposites 1254.4.2 Starch/Chitosan Composites 1264.4.3 Starch Cellulose Nanocomposites 1284.4.4 Starch Nanocomposites with Other Nanofillers 1294.5 Starch Nanocrystal, Nanoparticle, and Nanocolloid Preparation and Modification Methods 1314.5.1 Starch Nanocrystals Preparation by Acid Hydrolysis Method 1314.5.2 Starch Nanocrystal Modification Methods 1334.5.2.1 Starch Nanocrystals Chemical Modification by Molecules with Low Molecular Weight 1334.5.2.2 Modification of Starch Nanocrystals via Surface Grafting of Polymers 1334.5.3 Starch Nanoparticle and Nanocolloid Preparation and Modification Methods 1354.6 Nano Starch as Fillers in Other Nanocomposites 1404.7 Biomedical Application 1434.8 Conclusion 144References 1455 Biorenewable Nanofiber and Nanocrystal: Renewable Nanomaterials for Constructing Novel Nanocomposites 155Linxin Zhong and Xinwen Peng5.1 Nanocellulose-Based and Nanocellulose-Reinforced Nanocomposite Hydrogels 1565.1.1 Gelling Performances of Nanocelluloses 1575.1.2 Nanocelluloses-Reinforced Nanocomposite Hydrogels 1595.2 Nanocellulose-Based Aerogels 1665.2.1 Preparation and Properties of Nanocellulose Aerogels 1665.2.2 Nanocellulose–Polymer Composite Aerogels 1715.2.3 Nanocellulose–Inorganic Nanocomposite Aerogels 1765.2.4 Nanocellulose–Nanocarbon Hybrid Aerogels 1795.3 Nanocellulose-Based Biomimetic and Conductive Nanocomposite Films 1835.3.1 Nanocellulose–Polymer Biomimetic Nanocomposite Films 1835.3.2 Nanocellulose–Inorganic Biomimetic Nanocomposite Films 1875.3.3 Nanocellulose–Nanocarbon Conductive Nanocomposite Films 1905.4 Chiral Nematic Liquid Crystal and its Nanocomposites with Unique Optical Properties 1965.4.1 CNC Chiral Nematic Performances 1965.4.2 CNC–Polymer Photonic Nanocomposites 1995.4.3 CNC–Inorganic Photonic Nanocomposites 2025.4.4 CNC-Templated Chiral Nematic Nanomaterials 2045.5 Spun Fibers from Nanocelluloses 2075.5.1 Spinning Performances of Nanocelluloses and Properties 2075.5.2 Nanocellulose–Polymer Spinning Nanocomposite Fibers 2105.5.3 Nanocellulose–Nanocarbons Spinning Nanocomposite Fibers 2125.6 Summary and Outlook 213References 2156 Investigation of Wear Characteristics of Dental Composite Reinforced with Rice Husk–Derived Nanosilica Filler Particles 227I.K. Bhat, Amar Patnaik and Shiv Ranjan Kumar6.1 Introduction 2276.2 Materials and Method 2296.2.1 Synthesis of Nanosilica Powder 2296.2.2 Materials and Fabrication Details 2306.2.3 Determination of Hardness 2306.2.4 Determination of Flexural Strength 2316.2.5 Determination of Wear 2316.2.6 Field Emission Scanning Electron Microscope 2326.3 Results and Discussion 2326.3.1 Effect of Vickers Hardness on the Dental Composite Filled with Silane-Treated Nanosilica 2326.3.2 Effect of Flexural Strength on the Dental Composite Filled with Silane-Treated Nanosilica 2336.3.3 Steady-State Condition for Wear Characterization in Food Slurry and Acidic Medium 2336.3.3.1 Effect of Chewing Load on Volumetric Wear Rate on Dental Composite 2336.3.3.2 Effect of Profile Speed on Volumetric Wear Rate of Dental Composite 2356.3.3.3 Effect of Chamber Temperature on Volumetric Wear Rate of Dental Composite 2366.3.4 Wear Analysis of Experimental Results by Taguchi Method and ANOVA Analysis 2376.3.4.1 Wear Analysis of Silane-Treated Nanosilica-Filled Dental Composite in Food Slurry Using Taguchi and ANOVA 2376.3.4.2 Wear Analysis of Silane-Treated Nanosilica-Filled Dental Composite in Citric Acid Using Taguchi and ANOVA 2406.3.5 Surface Morphology of Worn Surfaces Under Food Slurry and Citric Acid Condition 2416.3.6 Confirmation Experiment of Proposed Composites 2436.4 Conclusions 244Acknowledgments 245Nomenclature 245References 2457 Performance of Regenerated Cellulose Nanocomposites Fabricated via Ionic Liquid Based on Halloysites and Vermiculite 249Nurbaiti Abdul Hanid, Mat Uzir Wahit and Qipeng Guo7.1 Introduction 2507.1.1 Overview 2507.1.2 Cellulose Structure and Properties 2507.1.3 Regenerated Cellulose 2517.1.4 Conventional Solvent for Cellulose 2517.1.5 Dissolution of Cellulose in NMMO 2527.1.6 Cellulose Dissolution in Ionic Liquid 2537.1.7 Regenerated Cellulose Nanocomposites 2557.1.8 Halloysites 2557.1.9 Vermiculite 2557.2 Experimental 2567.2.1 Materials 2567.2.2 Sample Preparation 2577.2.2.1 The Preparation of Regenerated Cellulose via Ionic Liquid 2577.2.2.2 Preparation of Regenerated Cellulose Nanocomposites via Ionic Liquids 2577.2.3 Characterization of the Nanocomposites Films 2577.3 Results and Discussions 2587.3.1 XRD Patterns of RC Nanocomposites 2587.3.2 FTIR Spectra of RC Nanocomposites 2597.3.3 Mechanical Properties of RC Nanocomposites 2617.3.4 Morphology Analysis of the RC Nanocomposites 2637.3.4.1 Transmission Electron Micrographs Images Analysis 2637.3.4.2 Scanning Electron Microscopy Images Analysis 2647.3.5 Thermal Stability Analysis of RC Nanocomposites 2657.3.6 Water Absorption of RC Nanocomposites 2677.4 Conclusion 268Acknowledgments 269References 2698 Preparation, Structure, Properties, and Interactions of the PVA/Cellulose Composites 275Bai Huiyu8.1 PVA and Cellulose 2758.1.1 Polyvinyl Alcohol 2758.1.1.1 Molecular Weight and the Degree of Alcoholysis 2758.1.1.2 The Advantages and Disadvantages of PVA 2768.1.2 Cellulose 2778.1.2.1 Structure and Chemistry of Cellulose 2778.1.2.2 Source of Cellulose 2788.1.2.3 The Particle Types of Cellulose 2788.1.2.4 Properties of Cellulose 2798.1.2.5 Application of Cellulose 2808.1.3 PVA/Cellulose Composites 2808.1.3.1 The Properties of PVA/Cellulose Composites 2808.1.3.2 Application of PVA/Cellulose Composites 2818.2 The Bulk and Surface Modification of Cellulose Particles 2818.2.1 The Bulk Modification of Cellulose Particles 2818.2.1.1 Complex Modification 2818.2.1.2 Graft Polymerization 2828.2.2 The Surface Modification of Cellulose 2838.2.2.1 Chemical Surface Modification 2838.2.2.2 Physical Surface Modification 2848.3 The Methods and Technology of Preparation of the PVA/Cellulose Composites 2848.3.1 Solvent Casting 2848.3.2 Melt Processing 2858.3.3 Electrospun Fiber 2858.3.4 In Situ Production 2868.4 The Relationship between Structure and Properties of PVA/Cellulose Composites 2868.4.1 Interpenetrating Polymer Network 2868.4.2 Hydrogen-Bonding or Bond Network 2878.4.3 Chemical Cross-Linked Network 2878.5 The Effect of the Interaction between PVA and Cellulose on Properties of PVA/Cellulose Composites 2888.5.1 Characterization Methods for the Interaction between PVA and Cellulose 2888.5.1.1 Raman Spectroscopy 2888.5.1.2 Differential Scanning Calorimetry 2888.5.1.3 X-Ray Powder Diffraction 2898.5.1.4 Fourier Transform Infrared 2898.5.2 Interaction between PVA and Cellulose 2908.5.2.1 Molecular Interactions 2908.5.2.2 Covalent Interactions 2908.5.2.3 Nucleation of Cellulose 2908.6 Conclusions and Outlook 291References 2919 Green Composites with Cellulose Nanoreinforcements 299Denis Mihaela Panaitescu, Adriana Nicoleta Frone and Ioana Chiulan9.1 Introduction 2999.2 A Short Overview on Nanosized Cellulose 3009.3 General Aspects on Green Composites with Cellulose Nanoreinforcements 3049.4 Green Composites from Biopolyamides and Cellulose Nanoreinforcements 3059.5 Green Composites from Polylactide and Cellulose Nanoreinforcements 3099.5.1 General Aspects 3099.5.2 Processing Methods 3109.5.2.1 Solution Casting 3109.5.2.2 Melt Processing 3119.5.2.3 Other Processing Techniques 3149.5.3 Mechanical, Thermal, and Morphological Properties 3149.5.4 Applications 3189.6 Microbial Polyesters Nanocellulose Composites 3199.6.1 PHAs Biosynthesis 3199.6.2 General Overview on PHAs–Nanocellulose Composites 3219.6.3 Processing Strategies for the Preparation of PHAs–Cellulose Nanocomposites 3219.6.4 Morphological, Thermal, and Mechanical Characteristics of PHAs/Nanocellulose 3239.6.5 Biodegradability and Biocompatibility 3279.6.6 Applications 3289.7 Conclusions 328Acknowledgment 329References 32910 Biomass Composites from Bamboo-Based Micro/Nanofibers 339Haruo Nishida, Keisaku Yamashiro and Takayuki Tsukegi10.1 Introduction 33910.2 Bamboo Microfiber and Microcomposites 34010.2.1 Bamboo Fibrovascular Bundle Structure 34010.2.2 Preparation Methods of Short Bamboo Microfiber 34110.2.3 Preparation of sBμF with Super-Heated Steam 34210.2.3.1 SHS Treatment 34210.2.3.2 Characterization Methods of sBμF 34210.2.3.3 Changes in Surface Morphology of SHS-Treated Bamboo 34410.2.3.4 Changes in Chemical and Physical Properties of SHS-Treated Bamboo 34510.2.3.5 Classification of sBμF 34810.2.4 Preparation of sBμF/Plastic Microcomposites 34910.2.4.1 Mechanical and Physical Properties of sBμF/Plastic Microcomposites 34910.2.4.2 Melt Processability of sBμF/Plastic Microcomposites 35010.2.4.3 Electrical Properties of sBμF/Plastic Microcomposites 35010.3 Bamboo Lignocellulosic Nanofiber and Nanocomposite 35210.3.1 Nanofibrillation Technologies of Cellulose 35210.3.2 Nanofibrillation Technologies of Lignocellulose 35210.3.3 Reactive Processing for Nanofibrillation 35310.3.4 Changes in Cellulose Crystalline Structure after Nanofibrillation 35510.3.5 Preparation of BLCNF/Plastic Nanocomposites 35510.3.6 Properties of BLCNF/Plastic Nanocomposites 35610.4 Conclusions 357References 35811 Synthesis and Medicinal Properties of Polycarbonates and Resins from Renewable Sources 363Selvaraj Mohana Roopan, T.V. Surendra and G. Madhumitha11.1 Introduction 36311.2 Synthesis 36511.2.1 Chemical Synthesis of Polycarbonates 36511.2.2 Synthesis of Polycarbonate from Eugenol 36511.2.3 Synthesis of Renewable Bisphenols from 2,3-Pentanedione 36611.2.4 Synthesis of Mesoporous PC–SiO2 36711.2.5 Synthesis of Fluorinated Epoxy-Terminated Bisphenol A Polycarbonate (FBPA-PC EP) 36711.2.6 Synthesis of Eugenol-Based Epoxy Resin (DEU-EP) 36811.3 Polycarbonates from Renewable Resources 36811.3.1 Ethylene from Biomass 36811.3.2 Synthesis of Dianols via Microwave Degradation 36911.3.3 Glycerol Carbonates from Recyclable Catalyst 36911.3.4 Alternative to Phosgene for Aromatic Polycarbonate and Isocyanate Syntheses 37011.3.5 Liquid-Phase Synthesis of Polycarbonate 37111.4 Medicinal Properties 37211.4.1 Polycarbonates in Drug Delivery 37211.4.2 Polycarbonates in Gene Transformation 37211.4.3 Cytotoxicity Test of Polycarbonates 37311.4.4 Polycarbonates in Autoimmunity 37411.4.5 Activation of Hyperprolactinemia and Immunostimulatory Response by Polycarbonates 37511.5 Conclusion 376References 37612 Nanostructured Polymer Composites with Modified Carbon Nanotubes 381A.P. Kharitonov, A.G. Tkachev, A.N. Blohin, I.V. Burakova, A.E. Burakov, A.E. Kucherova and A.A. Maksimkin12.1 Introduction 38212.1.1 Polymer Materials and Their Application 38212.1.2 Carbon Nanotubes Application and Their Main Properties 38712.2 Experimental Methods 39012.2.1 Investigation of the CNTs Synthesis 39012.2.2 CNTs Treatment 39512.2.3 Composites Fabrication 39512.2.4 Testing Procedures 39512.3 Results and Discussion 39612.3.1 FTIR Spectroscopy 39612.3.2 Influence of Fluorination on the CNTs Specific Surface 39612.3.3 X-Ray Photoelectron Spectroscopy Study 39612.3.4 TGA of Virgin and Fluorinated CNTs 39712.3.5 SEM Data of Composites Fracture 39712.3.6 TGA and DSC of Composites 40112.3.7 Mechanical Properties of Composites 40212.3.7.1 Tensile Strength 40212.3.7.2 Flexural Strength 40312.4 Conclusion 403Acknowledgments 404References 40413 Organic–Inorganic Nanocomposites Derived from Polysaccharides: Challenges and Opportunities 409Ana Barros-Timmons, Fabiane Oliveira and José A. Lopes-da-Silva13.1 Introduction 40913.2 Constituents 41213.2.1 Polysaccharides 41213.2.2 Inorganic Nanofillers 41313.3 Preparation of Polysaccharide-Derived Nanocomposites 41413.3.1 Surface Modification 41413.3.2 Addition of Components 41613.3.3 In Situ Preparation of Nanoparticles via Precursors 41913.4 Processing 42113.4.1 Plasticizers 42213.4.2 Conventional Processing Methods to Prepare Inorganic–Polysaccharide Nanocomposites 42213.4.3 Emerging Methods to Prepare Inorganic–Polysaccharide Nanocomposites 42413.5 Trends and Perspectives 426Acknowledgments 426References 42714 Natural Polymer-Based Nanocomposites: A Greener Approach for the Future 433Prasanta Baishya, Moon Mandal, Pankaj Gogoi and Tarun K. Maji14.1 Introduction 43314.2 Wood Polymer Nanocomposite 43514.3 Basic Components of Wood Polymer Nanocomposite 43614.4 Natural Polymer/Raw Material Used in Preparation of WPNC 43614.4.1 Starch 43614.4.2 Gluten 43714.4.3 Chitosan 43814.4.4 Vegetable Oil 43914.4.4.1 Chemical Modification of Vegetable Oil 44014.5 Wood 44214.6 Cross-Linker 44314.7 Modification of Natural Polymers 44314.7.1 Grafting of Starch 44314.7.2 Modification of Starch by Other Methods 44414.7.3 Plasticizer 44514.7.4 Nano-Reinforcing Agents 44614.7.4.1 Montmorillonite 44614.7.4.2 Metal Oxide Nanoparticles 44714.7.4.3 Carbon Nanotubes 44814.7.4.4 Nanocellulose 44814.8 Properties of Natural Polymer-Based Composites 44914.8.1 Mechanical Properties 44914.8.2 Thermal Properties 45014.8.3 Water Uptake and Dimensional Stability 45014.9 Conclusion and Future Prospects 451References 45215 Cellulose Whisker-Based Green Polymer Composites 461Silviya Elanthikkal, Tania Francis, C. Sangeetha and G. Unnikrishnan15.1 Cellulose: Discovery, Sources, and Microstructure 46215.1.1 Sources of Cellulose 46215.1.2 Microstructure of Cellulose 46315.2 Nanocellulose 46615.2.1 Acid Hydrolysis 46715.2.2 Mechanical Processes 47015.2.3 TEMPO-Mediated Oxidation 47115.2.4 Steam Explosion Method 47215.2.5 Enzymatic Hydrolysis 47315.2.6 Hydrolysis with Gaseous Acid 47415.2.7 Treatment with Ionic Liquid 47415.3 Polymer Composites 47515.3.1 Polymer Composite Fabrication Techniques 47615.3.1.1 Casting Evaporation Technique 47615.3.1.2 Extrusion 47615.3.1.3 Compression Molding 47715.3.1.4 Injection Molding 47815.3.2 Cellulose Whisker Composites: Literature-Based Discussion 47815.3.2.1 Latex-Based Composites 47815.3.2.2 Polar Polymer-Based Composites 47915.3.2.3 Nonpolar Polymer-Based Composites 47915.4 Applications of Cellulose Whisker Composites 48315.4.1 Packaging 48415.4.2 Automotive and Toys 48415.4.3 Electronics 48415.4.4 Biomedical Applications 485References 48616 Poly(Lactic Acid) Nanocomposites Reinforced with Different Additives 495Ravi Babu Valapa, G. Pugazhenthi and Vimal Katiyar16.1 Introduction 49516.2 Biopolymers 49716.2.1 Classification of Biopolymers 49716.3 PLA Nanocomposites 50216.3.1 PLA–Clay Nanocomposites 50216.3.2 PLA–Carbonaceous Nanocomposites 50716.3.3 PLA-Bio Filler Composites 51016.3.4 PLA–Silica Nanocomposites 51616.4 Summary 516References 51617 Nanocrystalline Cellulose: Green, Multifunctional and Sustainable Nanomaterials 523Samira Bagheri, Nurhidayatullaili Muhd Julkapli and Negar Mansouri17.1 Introduction: Natural Based Products 52317.2 Nanocellulose 52417.2.1 Nanocellulose: Properties 52417.2.1.1 Nanocellulose: Mechanical Properties 52617.2.1.2 Nanocellulose: Physical Properties 52617.2.1.3 Nanocellulose: Surface Chemistry Properties 52917.2.2 Nanocellulose: Synthesis Process 52917.2.2.1 Conventional Acid Hydrolysis Process 52917.2.3 Nanocellulose: Limitations 53017.2.3.1 Single Particles Dispersion 53017.2.3.2 Barrier Properties 53017.2.3.3 Permeability Properties 53117.3 Nanocellulose: Chemical Functionalization 53117.3.1 Organic Compounds Functionalization 53217.3.1.1 Molecular Functionalization 53217.3.1.2 Macromolecular Functionalization 53617.3.2 Nanocellulose: Inorganic Compounds Functionalization 53917.3.2.1 Nanocellulose-Titanium Oxide Functionalization 53917.3.2.2 Nanocellulose-Fluorine Functionalization 53917.3.2.3 Nanocellulose-Gold Functionalization 54017.3.2.4 Nanocellulose-Silver Functionalization 54017.3.2.5 Nanocellulose-Pd Functionalization 54017.3.2.6 Nanocellulose-CdS Functionalization 54117.4 Applications of Functionalized Nanocellulose 54117.4.1 Wastewater Treatment 54117.4.2 Biomedical Applications 54217.4.3 Biosensor and Bioimaging 54217.4.4 Catalysis 54317.5 Conclusion 543Acknowledgment 544References 54418 Halloysite-Based Bionanocomposites 557Giuseppe Lazzara, Marina Massaro, Stefana Milioto and Serena Riela18.1 Introduction 55718.2 Biodegradable Polymers 55918.2.1 Cellulose 55918.2.2 Chitosan 56018.2.3 Starch 56118.2.4 Alginate 56218.2.5 Pectin 56218.3 Natural Inorganic Filler: Halloysite Nanotubes 56318.3.1 Functionalization of HNTs 56518.3.1.1 Functionalization of External Surface 56518.3.1.2 Functionalization of the Lumen 56718.3.2 Composites Structured with Halloysite 56818.4 Bionanocomposites 56918.4.1 HNT-Biopolymer Nanocomposite Formation 56918.4.2 Properties of HNTs-Biopolymer Nanocomposites 57018.4.2.1 Bionanocomposites Surface Morphology 57118.4.2.2 Bionanocomposites Mechanical and Thermal Response 57318.5 Applications of HNT/Polysaccharide Nanocomposites 57618.6 Conclusions 578References 57919 Nanostructurated Composites Based on Biodegradable Polymers and Silver Nanoparticles 585Oana Fufă, George Mihail Vlăsceanu, Georgiana Dolete, Daniela Cabuzu, Rebecca Alexandra Puiu, Andreea Cîrjă, Bogdan Nicoară and Alexandru Mihai Grumezescu19.1 Introduction 58519.2 Silver Nanoparticles 58619.3 Applications of Silver Nanoparticles 58819.4 Silver Nanoparticle Composites 59419.4.1 In situ and ex situ Strategies for AgNPs-Based Composites with Polymer Matrix 59419.4.2 Other AgNPs Composites 59919.5 Applications of Silver Nanoparticles Composites 60019.5.1 Active Substance Delivery Composites 60019.5.2 Antimicrobial Composites 60319.6 Conclusions and Future Prospectives 607Acknowledgments 608References 60820 Starch-Based Biomaterials and Nanocomposites 623Arantzazu Valdés and María Carmen Garrigós20.1 Introduction 62320.2 Starch: Structure and Characteristics 62520.3 Applicability of Starch in Food Industry 62720.3.1 Starch Biomaterials: Films, Coatings, and Blends 62920.3.2 Reinforced Materials 63120.3.3 Starch Nanoparticles 63220.4 Conclusion 632References 63321 Green Nanocomposites-Based on PLA and Natural Organic Fillers 637Roberto Scaffaro, Luigi Botta, Francesco Lopresti, Andrea Maio and Fiorenza Sutera21.1 Introduction 63721.2 Poly(lactic acid) (PLA) 63821.3 Natural Organic Nanofillers 64021.3.1 Cellulose 64121.3.1.1 Main Derivatization Methods Used to Increase Cellulose Affinity to PLA 64321.3.2 Chitin 64521.3.3 Starch 64621.4 Bionanocomposites Based on PLA 64821.4.1 PLA/cellulose Nanocomposites 64821.4.1.1 Preparation 64821.4.1.2 Properties 65121.4.1.3 Degradation 65321.4.2 PLA/chitin Nanocomposites 65421.4.2.1 Preparation 65421.4.2.2 Properties 65521.4.3 PLA/starch Nanocomposites 65621.4.3.1 Preparation 65621.4.3.2 Properties 65721.5 Conclusions 659References 65922 Chitin and Chitosan-Based (NANO) Composites 671André R. Fajardo, Antonio G. B. Pereira, Alessandro F. Martins, Alexandre T. Paulino, Edvani C. Muniz and You-Lo Hsieh22.1 Introduction 67222.1.1 Chitin 67222.1.2 Chitosan 67322.2 Chitin and Chitosan Properties and Processing 67422.3 Preparation and Characterization of Ct and Cs Composites: An Overview 67522.4 Ct- and Cs-Metal Composites 67922.5 Ct and Cs-Inorganic Composites 68522.5.1 Food Packaging 68522.5.2 Membranes 68522.5.3 Biomedical Uses 68522.5.4 Environmental Remediation 68622.6 Composites Based on Ct and Cs Whiskers 68722.7 Overview, Perspectives, and Conclusion 690References 691Index 701
 
Du kanske också är intresserad av
Edinburgh Companion to Science Fiction and the Medical Humanities
Gavin Miller, Anna McFarlane, Donna McCormack, University of Glasgow) Miller, Gavin (Senior Lecturer in Medical Humanities, School of Critical Studies, University of Glasgow) McFarlane, Anna (British Academy Postdoctoral Fellow, University of Surrey) McCormack, Donna (Lecturer in English Literature, Donna Mccormack
3 999 kr
Edinburgh History of the Transnational British Press in Non-Anglophone Countries, 1800–1914
Diana Cooper-Richet, Isabelle Richet, Jennifer Hayward, Michelle Prain-Brice, France) Cooper-Richet, Diana (Senior Researcher at the Centre d’Histoire Culturelle des Societes Contemporaines, University of Versailles Saint-Quentin-en-Yvelines, Universite Paris Cite) Richet, Isabelle (Professor Emeritus, Ohio) Hayward, Jennifer (Professor of English and Global Media and Digital Studies, College of Wooster, Universidad Adolfo Ibanez) Prain-Brice, Michelle (Professor of Literature
3 999 kr