Fourier Analysis
Inbunden, Engelska, 2017
2 299 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.This book aims to learn to use the basic concepts in signal processing. Each chapter is a reminder of the basic principles is presented followed by a series of corrected exercises. After resolution of these exercises, the reader can pretend to know those principles that are the basis of this theme. "We do not learn anything by word, but by example."
Produktinformation
- Utgivningsdatum2017-01-17
- Mått160 x 236 x 20 mm
- Vikt522 g
- FormatInbunden
- SpråkEngelska
- Antal sidor266
- FörlagISTE Ltd and John Wiley & Sons Inc
- ISBN9781786301093
Tillhör följande kategorier
Roger Ceschi is the Director at Esigetel and Deputy Director General at Groupe Efrei in Paris, France. He is also Professor at several Chinese and South African universities. His research focuses on signal theory and stochastic processes.Jean-Luc Gautier retired as University Professor at ENSEA in Cergy, France in 2014. His research focused on the design of microwave circuits and the architecture of digital communications systems.
- Preface xiChapter 1. Fourier Series 11.1. Theoretical background 11.1.1. Orthogonal functions 11.1.2. Fourier Series 31.1.3. Periodic functions 51.1.4. Properties of Fourier series 61.1.5. Discrete spectra. Power distribution 81.2. Exercises 91.2.1. Exercise 1.1. Examples of decomposition calculations 101.2.2. Exercise 1.2 111.2.3. Exercise 1.3 121.2.4. Exercise 1.4 121.2.5. Exercise 1.5 121.2.6. Exercise 1.6. Decomposing rectangular functions 131.2.7. Exercise 1.7. Translation and composition of functions 141.2.8. Exercise 1.8. Time derivation of a function 151.2.9. Exercise 1.9. Time integration of functions 151.2.10. Exercise 1.10 151.2.11. Exercise 1.11. Applications in electronic circuits 161.3. Solutions to the exercises 171.3.1. Exercise 1.1. Examples of decomposition calculations 171.3.2. Exercise 1.2 251.3.3. Exercise 1.3 261.3.4. Exercice 1.4 261.3.5. Exercise 1.5 271.3.6. Exercise 1.6 271.3.7. Exercise 1.7. Translation and composition of functions 291.3.8. Exercise 1.8. Time derivation of functions 311.3.9. Exercise 1.9. Time integration of functions 321.3.10. Exercise 1.10 321.3.11. Exercise 1.11 35Chapter 2. Fourier Transform 392.1. Theoretical background 392.1.1. Fourier transform 392.1.2. Properties of the Fourier transform 422.1.3. Singular functions 462.1.4. Fourier transform of common functions 512.1.5. Calculating Fourier transforms using the Dirac impulse method 532.1.6. Fourier transform of periodic functions 542.1.7. Energy density 542.1.8. Upper limits to the Fourier transform 552.2. Exercises 562.2.1. Exercise 2.1 562.2.2. Exercise 2.2 572.2.3. Exercise 2.3 582.2.4. Exercise 2.4 592.2.5. Exercise 2.5 592.2.6. Exercise 2.6 592.2.7. Exercise 2.7 602.2.8. Exercise 2.8 602.2.9. Exercise 2.9 612.2.10. Exercise 2.10 622.2.11. Exercise 2.11 622.2.12. Exercise 2.12 632.2.13. Exercise 2.13 632.2.14. Exercise 2.14 642.2.15. Exercise 2.15 642.2.16. Exercise 2.16 652.2.17. Exercise 2.17 662.3. Solutions to the exercises 672.3.1. Exercise 2.1 672.3.2. Exercise 2.2 682.3.3. Exercise 2.3 742.3.4. Exercise 2.4 742.3.5. Exercise 2.5 762.3.6. Exercise 2.6 762.3.7. Exercise 2.7 772.3.8. Exercise 2.8 792.3.9. Exercise 2.9 822.3.10. Exercise 2.10 852.3.11 Exercise 2.11 862.3.12 Exercise 2.12 882.3.13 Exercise 2.13 912.3.14 Exercise 2.14 912.3.15 Exercice 2.15 922.3.16 Exercise 2.16 942.3.17 Exercise 2.17 95Chapter 3. Laplace Transform 973.1. Theoretical background 973.1.1. Definition 973.1.2. Existence of the Laplace transform 983.1.3. Properties of the Laplace transform 983.1.4. Final value and initial value theorems 1023.1.5. Determining reverse transforms 1023.1.6. Approximation methods 1053.1.7. Laplace transform and differential equations 1073.1.8. Table of common Laplace transforms 1083.1.9. Transient state and steady state 1103.2. Exercise instruction 1113.2.1. Exercise 3.1 1113.2.2. Exercise 3.2 1113.2.3. Exercise 3.3 1123.2.4. Exercise 3.4 1123.2.5. Exercise 3.5 1123.2.6. Exercise 3.6 1133.2.7. Exercise 3.7 1133.2.8. Exercise 3.8 1153.2.9. Exercise 3.9 1153.2.10. Exercise 3.10 1153.3. Solutions to the exercises 1163.3.1. Exercise 3.1 1163.3.2. Exercise 3.2 1173.3.3. Exercise 3.3 1213.3.4. Exercise 3.4 1223.3.5. Exercise 3.5 1303.3.6. Exercise 3.6 1313.3.7. Exercise 3.7 1323.3.8. Exercise 3.8 1363.3.9. Exercise 3.9 1383.3.10. Exercise 3.10 139Chapter 4. Integrals and Convolution Product 1434.1. Theoretical background 1434.1.1. Analyzing linear systems using convolution integrals 1434.1.2. Convolution properties 1444.1.3. Graphical interpretation of the convolution product 1454.1.4. Convolution of a function using a unit impulse 1454.1.5. Step response from a system 1474.1.6. Eigenfunction of a convolution operator 1484.2. Exercises 1494.2.1. Exercise 4.1 1494.2.2. Exercise 4.2 1504.2.3. Exercise 4.3 1504.2.4. Exercise 4.4 1514.2.5. Exercise 4.5 1514.2.6. Exercise 4.6 1524.3. Solutions to the exercises 1534.3.1. Exercise 4.1 1534.3.2. Exercise 4.2 1564.3.3. Exercise 4.3 1604.3.4. Exercise 4.4 1634.3.5. Exercise 4.5 1644.3.6. Exercise 4.6 165Chapter 5. Correlation 1695.1. Theoretical background 1695.1.1. Comparing signals 1695.1.2. Correlation function 1705.1.3. Properties of correlation functions 1725.1.4. Energy of a signal 1765.2. Exercises 1775.2.1. Exercise 5.1 1775.2.2. Exercise 5.2 1785.2.3. Exercise 5.3 1785.2.4. Exercise 5.4 1785.2.5. Exercice 5.5 1795.2.6. Exercice 5.6 1795.2.7. Exercise 5.7 1795.2.8. Exercice 5.8 1805.2.9. Exercise 5.9 1805.2.10. Exercise 5.10 1815.2.11. Exercise 5.11 1815.2.12. Exercise 5.12 1825.2.13. Exercise 5.13 1825.2.14. Exercise 5.14 1835.3. Solutions to the exercises 1835.3.1. Exercise 5.1 1835.3.2. Exercice 5.2 1885.3.3. Exercise 5.3 1915.3.4. Exercice 5.4 1925.3.5. Exercise 5.5 1935.3.6. Exercise 5.6 1965.3.7. Exercise 5.7 1975.3.8. Exercise 5.8 2015.3.9. Exercise 5.9 2045.3.10. Exercise 5.10 2055.3.11 Exercise 5.11 2065.3.12 Exercise 5.12 2075.3.13 Exercise 5.13 2085.3.14 Exercise 5.14 209Chapter 6. Signal Sampling 2136.1. Theoretical background 2136.1.1. Sampling principle 2136.1.2. Ideal sampling 2146.1.3. Finite width sampling 2186.1.4. Sample and hold (S/H) sampling 2216.2. Exercises 2256.2.1. Exercise 6.1 2256.2.2. Exercise 6.2 2256.2.3. Exercise 6.3 2266.2.4. Exercise 6.4 2266.2.5. Exercise 6.5 2266.2.6. Exercise 5.6 2276.2.7. Exercise 6.7 2276.2.8. Exercice 6.8 2286.3. Solutions to the exercises 2296.3.1. Exercise 6.1 2296.3.2. Exercise 6.2 2296.3.3. Exercise 6.3 2336.3.4. Exercice 6.4 2356.3.5. Exercise 6.5 2366.3.6. Exercise 6.6 2386.3.7. Exercise 6.7 2406.3.8. Exercise 6.8 242Bibliography 245Index 247