bokomslag Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing
Data & IT

Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing

Sudeep Pasricha Muhammad Shafique

Pocket

2249:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 571 sidor
  • 2024
This book presents recent advances towards thegoal ofenabling efficient implementation ofmachine learning models onresource-constrained systems, covering different application domains. Thefocus is onpresenting interesting and new use cases ofapplying machine learning toinnovative application domains, exploring theefficient hardware design ofefficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques forenergy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques forachieving even greater energy, reliability, and performance benefits. Discusses efficient implementation ofmachine learning in embedded, CPS, IoT, and edge computing; Offers comprehensive coverage ofhardware design, software design, and hardware/software co-design and co-optimization; Describes real applications todemonstrate how embedded, CPS, IoT, and edge applications benefit frommachine learning.
  • Författare: Sudeep Pasricha, Muhammad Shafique
  • Format: Pocket/Paperback
  • ISBN: 9783031406799
  • Språk: Engelska
  • Antal sidor: 571
  • Utgivningsdatum: 2024-10-08
  • Förlag: Springer International Publishing AG