Data & IT
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing
Sudeep Pasricha • Muhammad Shafique
Inbunden
2799:-
Uppskattad leveranstid 10-16 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
Andra format:
- Inbunden 1929:-
- Inbunden 2799:-
- Pocket/Paperback 1379:-
- Pocket/Paperback 2249:-
- Pocket/Paperback 2249:-
- Visa fler Visa färre
This book presents recent advances towards thegoal ofenabling efficient implementation ofmachine learning models onresource-constrained systems, covering different application domains. Thefocus is onpresenting interesting and new use cases ofapplying machine learning toinnovative application domains, exploring theefficient hardware design ofefficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques forenergy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques forachieving even greater energy, reliability, and performance benefits. Discusses efficient implementation ofmachine learning in embedded, CPS, IoT, and edge computing; Offers comprehensive coverage ofhardware design, software design, and hardware/software co-design and co-optimization; Describes real applications todemonstrate how embedded, CPS, IoT, and edge applications benefit frommachine learning.
- Format: Inbunden
- ISBN: 9783031406768
- Språk: Engelska
- Antal sidor: 571
- Utgivningsdatum: 2023-10-07
- Förlag: Springer International Publishing AG