Del 1780

Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors

Häftad, Engelska, 2002

Av Jan H. Bruinier

499 kr

Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Around 1994 R. Borcherds discovered a new type of meromorphic modular form on the orthogonal group $O(2,n)$. These "Borcherds products" have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. The fact that the zeros and poles of Borcherds products are explicitly given in terms of Heegner divisors makes them interesting for geometric and arithmetic applications. In the present text the Borcherds' construction is extended to Maass wave forms and is used to study the Chern classes of Heegner divisors. A converse theorem for the lifting is proved.

Produktinformation

  • Utgivningsdatum2002-04-10
  • Mått155 x 235 x 10 mm
  • Vikt260 g
  • FormatHäftad
  • SpråkEngelska
  • SerieLecture Notes in Mathematics
  • Antal sidor156
  • Upplaga2002
  • FörlagSpringer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • ISBN9783540433200