Beyond-CMOS Nanodevices 1
Inbunden, Engelska, 2014
Av Francis Balestra, France) Balestra, Francis (Institut Polytechnique, Grenoble
2 799 kr
Produktinformation
- Utgivningsdatum2014-05-23
- Mått165 x 241 x 34 mm
- Vikt916 g
- FormatInbunden
- SpråkEngelska
- Antal sidor528
- FörlagISTE Ltd and John Wiley & Sons Inc
- ISBN9781848216549
Tillhör följande kategorier
Francis Balestra received the M.S. and Ph.D. degrees in electronics from the Institut Polytechnique, Grenoble, France, in 1982 and 1985, respectively. He is a member of the European Academy of Sciences, of the Advisory Committee of the Chinese Journal of Semiconductors and Chinese Physics B and received the Blondel Medal (French SEE) in 2001. He is also member of the European ENIAC Scientific Community Council and several ENIAC/AENEAS Working Groups. F. Balestra has coauthored over 130 publications in international scientific journals, 240 communications at international conferences (more than 70 invited papers and review articles), and 20 books or chapters.
- ACKNOWLEDGMENTS xiiiGENERAL INTRODUCTION xvFrancis BALESTRAPART 1. SILION NANOWIRE BIOCHEMICAL SENSORS 1PART 1. INTRODUCTION 3Per-Erik HELLSTRÖM and Mikael ÖSTLINGCHAPTER 1. FABRICATION OF NANOWIRES 5Jens BOLTEN, Per-Erik HELLSTRÖM, Mikael ÖSTLING, Céline TERNON and Pauline SERRE1.1. Introduction 51.2. Silicon nanowire fabrication with electron beam lithography 61.2.1. Key requirements 61.2.2. Why electron beam lithography? 71.2.3. Lithographic requirements 81.2.4. Tools, resist materials and development processes 91.2.5. Exposure strategies and proximity effect correction 101.2.6. Technology limitations and how to circumvent them 111.3. Silicon nanowire fabrication with sidewall transfer lithography 141.4. Si nanonet fabrication 171.4.1. Si NWs fabrication 181.4.2. Si nanonet assembling 191.4.3. Si nanonet morphology and properties 191.5. Acknowledgments 211.6. Bibliography 21CHAPTER 2. FUNCTIONALIZATION OF SI-BASED NW FETs FOR DNA DETECTION 25Valérie STAMBOULI, Céline TERNON, Pauline SERRE and Louis FRADETAL2.1. Introduction 252.2. Functionalization process 272.3. Functionalization of Si nanonets for DNA biosensing 282.3.1. Detection of DNA hybridization on the Si nanonet by fluorescence microscopy 312.3.2. Preliminary electrical characterizations of NW networks 332.4. Functionalization of SiC nanowire-based sensor for electrical DNA biosensing352.4.1. SiC nanowire-based sensor functionalization process 352.4.2. DNA electrical detection from SiC nanowire-based sensor 382.5. Acknowledgments 392.6. Bibliography 40CHAPTER 3. SENSITIVITY OF SILICON NANOWIRE BIOCHEMICAL SENSORS 43Pierpaolo PALESTRI, Mireille MOUIS, Aryan AFZALIAN, Luca SELMI, Federico PITTINO, Denis FLANDRE and Gérard GHIBAUDO3.1. Introduction 433.1.1. Definitions 433.1.2. Main parameters affecting the sensitivity 473.2. Sensitivity and noise 473.3. Modeling the sensitivity of Si NW biosensors 503.3.1. Modeling the electrolyte 523.4. Sensitivity of random arrays of 1D nanostructures 543.4.1. Electrical characterization 553.4.2. Low-frequency noise characterization 563.4.3. Simulation of electron conduction in random networks of 1D nanostructures 563.4.4. Discussion 593.5. Conclusions 593.6. Acknowledgments 603.7. Bibliography 60CHAPTER 4. INTEGRATION OF SILICON NANOWIRES WITH CMOS 65Per-Erik HELLSTRÖM, Ganesh JAYAKUMAR and Mikael ÖSTLING4.1. Introduction 654.2. Overview of CMOS process technology 664.3. Integration of silicon nanowire after BEOL 664.4. Integration of silicon nanowires in FEOL 674.5. Sensor architecture design 694.6. Conclusions 714.7. Bibliography 72CHAPTER 5. PORTABLE, INTEGRATED LOCK-IN-AMPLIFIER-BASED SYSTEM FOR REAL-TIME IMPEDIMETRIC MEASUREMENTS ON NANOWIRES BIOSENSORS 73Michele ROSSI and Marco TARTAGNI5.1. Introduction 735.2. Portable stand-alone system 745.3. Integrated impedimetric interface 765.4. Impedimetric measurements on nanowire sensors 785.5. Bibliography 81PART 2. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR ENERGY HARVESTING 83PART 2. INTRODUCTION 85Enrico SANGIORGICHAPTER 6. VIBRATIONAL ENERGY HARVESTING 89Luca LARCHER, Saibal ROY, Dhiman MALLICK, Pranay PODDER, Massimo DE VITTORIO, Teresa TODARO, Francesco GUIDO, Alessandro BERTACCHINI, Ronan HINCHET, Julien KERAUDY and Gustavo ARDILA6.1. Introduction 896.2. Piezoelectric energy transducer 916.2.1. Introduction 916.2.2. State-of-the-art devices and materials 926.2.3. MEMS piezoelectric vibration energy harvesting transducers 956.2.4. RMEMS prototypes characterization and discussions of experimental results 1026.2.5. Near field characterization techniques 1046.2.6. Dedicated electro-mechanical models for piezoelectric transducer design 1066.3. Electromagnetic energy transducers 1096.3.1. Introduction 1096.3.2. State-of-the-art devices and materials 1096.3.3. Vibration energy harvester exploiting both the piezoelectric and electromagnetic effect 1226.3.4. Device design 1256.4. Bibliography 128CHAPTER 7. THERMAL ENERGY HARVESTING 135Mireille MOUIS, Emigdio CHÁVEZ-ÁNGEL, Clivia SOTOMAYOR-TORRES, Francesc ALZINA, Marius V. COSTACHE, Androula G. NASSIOPOULOU, Katerina VALALAKI, Emmanouel HOURDAKIS, Sergio O. VALENZUELA, Bernard VIALA, Dmitry ZAKHAROV, Andrey SHCHEPETOV and Jouni AHOPELTO7.1. Introduction 1357.1.1. Basics of thermoelectric conversion 1367.1.2. Strategies to increase ZT 1377.1.3. Heavy-metal-free TE generation 1407.1.4. Alternatives to TE harvesting for self-powered solid-state microsystems 1417.2. Thermal transport at nanoscale 1427.2.1. Brief review of nanoscale thermal conductivity 1437.2.2. The effect of phonon confinement 1467.2.3. Fabrication of ultrathin free-standing silicon membranes 1537.2.4. Advanced methods of characterizing phonon dispersion, lifetimes and thermal conductivity 1567.3. Porous silicon for thermal insulation on silicon wafers 1727.3.1. Introduction 1727.3.2. Thermal conductivity of nanostructured porous Si 1727.3.3. Thermal isolation using thick porous Si layers 1767.3.4. Thermoelectric generator using porous Si thermal isolation 1777.4. Spin dependent thermoelectric effects 1857.4.1. Physical principle and interest for thermal energy harvesting 1867.4.2. Demonstration of the magnon drag effect 1887.5. Composites of thermal shape memory alloy and piezoelectric materials 1927.5.1. Introduction 1927.5.2. Physical principle and interest for thermal energy harvesting 1937.5.3. Novelty and realizations 1947.5.4. Theoretical considerations 1957.5.5. Examples of use 1967.5.6. Summary of composite harvesting by the combination of SMA and piezoelectric materials 2047.6. Conclusions 2047.7. Bibliography 205CHAPTER 8. NANOWIRE BASED SOLAR CELLS 221Mauro ZANUCCOLI, Anne KAMINSKI-CACHOPO, Jérôme MICHALLON, Vincent CONSONNI, Igar SEMENIKHIN, Mehdi DAANOUNE, Frédérique DUCROQUET, David KOHEN, Christine MORIN and Claudio FIEGNA8.1 Introduction 2218.2. Design of NW-based solar cells 2238.2.1. Geometrical optimization of NW-based solar cells by numerical simulations 2238.2.2. TCAD simulation of NW-based solar cells 2308.3. Fabrication and opto-electrical characterization of NW-based solar cells 2358.3.1. Elaboration of NW-based solar cells 2358.3.2. Opto-electrical characterization of NW-based solar cells 2368.4 Conclusion 2438.5 Acknowledgments 2438.6 Bibliography 243CHAPTER 9. SMART ENERGY MANAGEMENT AND CONVERSION 249Wensi WANG, James F. ROHAN, Ningning WANG, Mike HAYES, Aldo ROMANI, Enrico MACRELLI, Michele DINI, Matteo FILIPPI, Marco TARTAGNI and Denis FLANDRE9.1. Introduction 2499.2. Power management solutions for energy harvesting devices 2519.2.1. Ultra-low voltage thermoelectric energy harvesting 2519.2.2. Sub-1mW photovoltaic energy harvesting 2569.2.3. Piezoelectric and micro-electromagnetic energy harvesting 2609.2.4. DC/DC power management for future micro-generator 2629.3. Sub-mW energy storage solutions 2669.4. Conclusions 2709.5. Bibliography 271PART 3. ON-CHIP ELECTRONIC COOLING 277CHAPTER 10. TUNNEL JUNCTION ELECTRONIC COOLERS 279Martin PREST, James RICHARDSON-BULLOCK, Terry WHALL, Evan PARKER and David LEADLEY10.1. Introduction and motivation 27910.1.1. Existing cryogenic technology 28010.2. Tunneling junctions as coolers 28110.2.1. The NIS junction 28110.2.2. Cooling power 28410.2.3. Thermometry 28610.2.4. The superconductor-insulator-normal metal-insulator-superconductor (SINIS) structure 28710.2.5. Double junction superconductor-silicon-superconductor (SSmS) cooler 28810.3. Limitations to cooling 28910.3.1. States within the superconductor gap 29010.3.2. Joule heating 29110.3.3. Series resistance 29110.3.4. Quasi-particle-related heating 29310.3.5. Andreev reflection 29510.4. Heavy fermion-based coolers 29710.5. Summary 29910.6. Bibliography 300CHAPTER 11. SILICON-BASED COOLING ELEMENTS 303David LEADLEY, Martin PREST, Jouni AHOPELTO, Tom BRIEN, David GUNNARSSON, Phil MAUSKOPF, Juha MUHONEN, Maksym MYRONOV, Hung NGUYEN, Evan PARKER, Mika PRUNNILA, James RICHARDSON-BULLOCK, Vishal SHAH, Terry WHALL and Qing-Tai ZHAO11.1. Introduction to semiconductor-superconductor tunnel junction coolers 30311.2. Silicon-based Schottky barrier junctions 30411.3. Carrier-phonon coupling in strained silicon 30811.3.1. Measurement of electron-phonon coupling constant 31211.4. Strained silicon Schottky barrier mK coolers 31511.5. Silicon mK coolers with an oxide barrier [GUN 13] 31811.5.1. Reduction of sub-gap leakage 31811.5.2. Effects of strain 31911.6. The silicon cold electron bolometer 32111.7. Integration of detector and electronics 32411.8. Summary and future prospects 32511.9. Acknowledgments 32711.10 Bibliography 327CHAPTER 12. THERMAL ISOLATION THROUGH NANOSTRUCTURING. 331David LEADLEY, Vishal SHAH, Jouni AHOPELTO, Francesc ALZINA, Emigdio CHÁVEZ-ÁNGEL, Juha MUHONEN, Maksym MYRONOV, Androula G. NASSIOPOULOU, Hung NGUYEN, Evan PARKER, Jukka PEKOLA, Martin PREST, Mika PRUNNILA, Juan Sebastian REPARAZ, Andrey SHCHEPETOV, Clivia SOTOMAYOR-TORRES, Katerina VALALAKI and Terry WHALL12.1. Introduction 33112.2. Lattice cooling by physical nanostructuring 33112.3. Porous Si membranes as cryogenic thermal isolation platforms 33712.3.1. Porous Si micro-coldplates 33712.3.2. Porous Si thermal conductivity 33912.4. Crystalline membrane platforms 34312.4.1. Strained germanium membranes 34312.4.2. Thermal conductance measurements in Si and Ge membranes 35012.4.3. Epitaxy-compatible thermal isolation platform 35512.5. Summary of thermal conductance measurements 35512.6. Acknowledgments. 35812.7. Bibliography 358PART 4. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR RF APPLICATIONS 365PART 4. INTRODUCTION 367Androula G. NASSIOPOULOUCHAPTER 13. SUBSTRATE TECHNOLOGIES FOR SILICON-INTEGRATED RF AND MM-WAVE PASSIVE DEVICES 373Androula G. NASSIOPOULOU, Panagiotis SARAFIS, Jean-Pierre RASKIN, Hanza ISSA, Philippe FERRARI13.1. Introduction 37313.2. High-resistivity Si substrate for RF 37413.2.1. Losses along coplanar waveguide transmission lines 37513.2.2. Crosstalk 38013.2.3. Nonlinearities along CPW lines 38413.3. Porous Si substrate technology 38513.3.1. General properties of porous Si 38613.3.2. Dielectric properties of porous Si 38913.3.3. Broadband electrical characterization of CPWT Lines on porous Si 39313.3.4. Inductors on porous Si39713.3.5. Antennas on porous Si39913.4. Comparison between HR Si and local porous Si substrate technologies 40013.4.1. Comparison of similar CPW TLines on different substrates 40013.4.2. Comparison of inductors on different RF substrates 40413.5. Design of slow-wave CPWs and filters on porous silicon 40413.5.1. Slow-wave CPW TLines on porous Si 40513.5.2. Simulation results for S-CPW TLines 40613.5.3. Stepped impedance low-pass filter on porous silicon 40813.5.4. Simulation results for filters 40913.6. Conclusion 41113.7. Acknowledgments 41113.8. Bibliography 411CHAPTER 14. METAL NANOLINES AND ANTENNAS FOR RF AND MM-WAVE APPLICATIONS 419Philippe BENECH, Chuan-Lun HSU, Gustavo ARDILA, Panagiotis SARAFIS and Androula G. NASSIOPOULOU14.1. Introduction 41914.2. Metal nanowires (nanolines) 42014.2.1. General properties 42014.2.2. Transmission nanolines in microstrip configuration: characterization and modeling 42614.2.3. Transmission nanolines in CPW configuration: fabrication, characterization and modeling 43014.2.4. Characterization up to 200 GHz 44014.3. Antennas 44114.3.1. On-chip antennas: general 44114.3.2. On-chip antenna characterization method 44314.3.3. Measurement results 44414.3.4. Discussion on antenna results 45114.4. Conclusion 45114.5. Acknowledgments 45214.6. Bibliography 452CHAPTER 15. NANOSTRUCTURED MAGNETIC MATERIALS FOR HIGH-FREQUENCY APPLICATIONS 457Saibal ROY, Jeffrey GODSELL and Tuhin MAITY15.1. Introduction 45715.2. Power conversion and integration 45715.3. Materials and integration 45915.4. Controlling the magnetic properties 46315.5. Magnetic properties of nanocomposite materials 46715.6. Magnetic properties of nanomodulated continuous films 47015.7. Conclusion 47815.8. Bibliography 479LIST OF AUTHORS 485INDEX 493