Applied Nanoindentation in Advanced Materials
Inbunden, Engelska, 2017
2 379 kr
Produktinformation
- Utgivningsdatum2017-09-08
- Mått178 x 246 x 38 mm
- Vikt1 474 g
- SpråkEngelska
- Antal sidor704
- FörlagJohn Wiley & Sons Inc
- EAN9781119084495
Du kanske också är intresserad av
Smart Biomaterial Devices
A.K. Bajpai, Jaya Bajpai, Rajesh Kumar Saini, Priyanka Agrawal, Atul Tiwari, India) Bajpai, A.K. (Autonomous Science College, Jabalpur, India) Bajpai, Jaya (Autonomous Science College, Jabalpur, India) Saini, Rajesh Kumar (Ravi Shankar Institute of Technology and Management, Jhinna, USA) Tiwari, Atul (University of Hawaii at Manoa, Honolulu, A. K. Bajpai
2 849 kr
Handbook of Waterborne Coatings
Peter Zarras, Mark D. Soucek, Atul Tiwari, USA) Zarras, Peter (Fellow, Naval Air Warfare Center Weapons Division, China Lake, California, USA) Soucek, Mark D. (Professor, Department of Polymer Engineering, The University of Akron, Akron, USA) Tiwari, Atul (Department of Mechanical Engineering, University of Hawaii, Manoa
2 269 kr
Tillhör följande kategorier
Editors:Dr. Atul Tiwari is the Fellow of The Royal Society of Chemistry, UK and currently serves as President, Flora Coatings Company. in Phoenix, USA. Previously, Dr. Tiwari has served as a research faculty member in the Department of Mechanical Engineering at the University of Hawaii, USA. He has achieved double subject majors, in Organic Chemistry as well as Mechanical Engineering. He has also received Ph.D. in Polymer Materials Science along with the earned Chartered Chemist and Chartered Scientist status from the Royal Society of Chemistry, UK. Dr. Sridhar Natarajan is currently the Chief Medical Examiner/Director at Lubbock County Medical Examiner's Office, Lubbock, Texas. He was a Colonel, Medical Corp in the United States Army Reserves (Retired) and is a former United Stated Navy Nuclear Submarine Officer Gold Dolphin Insignia.
- List of Contributors xviiPreface xxiiiPart I 11 Determination of Residual Stresses by Nanoindentation 3P-L. Larsson1.1 Introduction 31.2 Theoretical Background 51.3 Determination of Residual Stresses 121.3.1 Low Hardening Materials and Equi-biaxial Stresses 121.3.2 General Residual Stresses 131.3.3 Strain-hardening Effects 151.3.4 Conclusions and Remarks 15References 162 Nanomechanical Characterization of Carbon Films 19Ben D. Beake and TomaszW. Liskiewicz2.1 Introduction 192.1.1 Types of DLC Coatings and their Mechanical Properties 192.1.2 Carbon Films Processing Methods 202.1.3 Residual Stresses in Carbon Films 212.1.4 Friction Properties of Carbon Films 222.1.5 Multilayering Strategies 232.1.6 Applications of Carbon Films 242.1.7 Optimization/testing Challenges 242.2 Factors Influencing Reliable and Comparable Hardness and Elastic Modulus Determination 242.2.1 The International Standard for Depth-sensing Indentation: EN ISO 14577–4 : 2007 242.2.2 Challenges in Ultra-thin Films 272.2.3 Indenter Geometry 282.2.4 Surface Roughness 282.3 Deformation in Indentation Contact 302.3.1 The Relationship Between H/E and Plastic and ElasticWork in Nanoindentation 302.3.2 Variation in H/E and Plasticity Index for Different DLC Films 312.3.3 Cracking and Delamination 322.3.4 Coatings on Si: Si Phase Transformation 332.4 Nano-scratch Testing 342.4.1 Scan Speed and Loading Rate 352.4.2 Influence of Probe Radius 362.4.3 Contact Pressure 362.4.4 Role of the Si Substrate in Nano-scratch Testing 382.4.5 Failure Behaviour of ta-C on Si 402.4.6 Film Stress and Thickness 432.4.7 Repetitive Nano-wear by Multi-pass Nano-scratch Tests 442.4.8 Load Dependence of Friction 462.5 Impact and Fatigue Resistance of DLC Films Using Nano-impact Testing 462.5.1 Compositionally Graded a-C and a-C:H Coatings on M42 Tool Steel 492.5.2 DLC/Cr Coating on Steel 512.5.3 PACVD a-C:H Coatings on M2 Steel 512.5.4 DLC Films on Si-film Thickness, Probe Geometry, Impact Force and Interfacial Toughness 522.6 Wear Resistance of Amorphous Carbon Films Using Nano-fretting Testing 542.6.1 Nano-fretting: State-of-the-art 552.6.2 Nano-fretting of Thin DLC Films on Si 552.6.3 Nano-fretting of DLC Coatings on Steel 572.7 Conclusion 58References 593 Mechanical Evaluation of Nanocoatings under Extreme Environments for Application in Energy Systems 69E.J. Rubio, G. Martinez, S.K. Gullapalli, M. Noor-A-Alam and C.V. Ramana3.1 Introduction 693.2 Thermal Barrier Coatings 703.2.1 Nanoindentation Characterization of TBCs 723.2.2 Mechanical Properties of Hafnium-based TBCs 743.3 Nanoindentation Evaluation of Coatings for Nuclear Power Generation Applications 763.3.1 Evaluation ofW-based Materials for Nuclear Application 773.4 Conclusions and Outlook 80Acknowledgments 81References 814 Evaluation of the Nanotribological Properties of Thin Films 83ShojiroMiyake and MeiWang4.1 Introduction 834.2 Evaluation Methods of Nanotribology 834.3 Nanotribology Evaluation Methods and Examples 844.3.1 Nanoindentation Evaluation 844.3.2 Nanowear and Friction Evaluation 884.3.2.1 Nanowear Properties 894.3.2.2 Frictional Properties with Different Lubricants 914.3.2.3 Nanowear and Frictional Properties, Evaluated with and withoutVibrations 954.3.3 Evaluation of the Force Modulation 984.3.4 Evaluation of the Mechanical and Other Physical Properties 1024.4 Conclusions 108References 1085 Nanoindentation on Tribological Coatings 111Francisco J.G. Silva5.1 Introduction 1115.2 Relevant Properties on Coatings for Tribological Applications 1165.3 How can Nanoindentation Help Researchers to Characterize Coatings? 1165.3.1 Thin Coatings Nanoindentation Procedures 1185.3.2 Hardness Determination 1205.3.3 Young’s Modulus Determination 1235.3.4 Tensile Properties Determination 1245.3.5 Fracture Toughness inThin Films 1255.3.6 Coatings Adhesion Analysis 1265.3.7 Stiffness and Other Mechanical Properties 1275.3.8 Simulation and Models Applied to Nanoindentation 128References 1296 Nanoindentation of Macro-porous Materials for Elastic Modulus and Hardness Determination 135Zhangwei Chen6.1 Introduction 1356.1.1 Nanoindentation Fundamentals for Dense Materials 1356.1.2 Introduction to Porous Materials 1376.1.3 Studies of Elastic Properties of Porous Materials 1386.2 Nanoindentation of Macro-porous Bulk Ceramics 1406.3 Nanoindentation of Bone Materials 1436.4 Nanoindentation of Macro-porous Films 1446.4.1 Substrate Effect 1456.4.2 Densification Effect 1476.4.3 Surface Roughness Effect 1496.5 Concluding Remarks 151Acknowledgements 151References 1517 Nanoindentation Applied to DC Plasma Nitrided Parts 157Silvio Francisco Brunatto and CarlosMaurício Lepienski7.1 Introduction 1577.2 Basic Aspects of DC Plasma Nitrided Parts 1607.2.1 The Potential Distribution for an Abnormal Glow Discharge 1607.2.2 Plasma-surface Interaction in Cathode Surface 1617.2.3 Electrical Configuration Modes in DC Plasma Nitriding 1627.3 Basic Aspects of Nanoindentation in Nitrided Surfaces 1637.4 Examples of Nanoindentation Applied to DC Plasma Nitrided Parts 1677.4.1 Mechanical Polishing: Nanoindentation in Niobium 1697.4.2 Surface Roughness: Nanoindentation in DC Plasma Nitrided Parts 1707.4.2.1 Nanoindentation in DC Plasma Nitrided Niobium 1707.4.2.2 Nanoindentation in DC Plasma Nitrided Titanium 1747.4.2.3 Nanoindentation in DC Plasma Nitrided Martensitic Stainless Steel 1757.4.3 Nitrogen-concentration Gradients: Nanoindentation in DC Plasma Nitrided Tool Steel 1767.4.4 Crystallographic Orientation: Nanoindentation in DC Plasma Nitrided Austenitic Stainless Steels 1777.5 Conclusion 178Acknowledgements 179References 1798 Nanomechanical Properties of Defective Surfaces 183Oscar Rodríguez de la Fuente8.1 Introduction 1838.1.1 The Role of Surface Defects in Plasticity 1838.1.2 Experimental Techniques for Visualization and Generation of Surface Defects 1848.1.3 Approaches to Study and Probe Nanomechanical Properties 1858.2 Homogeneous and Heterogeneous Dislocation Nucleation 1868.2.1 Homogeneous Dislocation Nucleation 1868.2.2 Heterogeneous Dislocation Nucleation 1888.3 Surface Steps 1908.3.1 Studies on Surface Steps 1918.4 Subsurface Defects 1948.4.1 Sub-surface Vacancies 1958.4.2 Sub-surface Impurities and Dislocations 1958.5 Rough Surfaces 1978.6 Conclusions 200Acknowledgements 200References 2009 Viscoelastic and Tribological Behavior of Al2O3 Reinforced Toughened Epoxy Hybrid Nanocomposites 205Mandhakini Mohandas and AlagarMuthukaruppan9.1 Introduction 2059.2 Experimental 2069.2.1 Materials 2069.2.2 FTIR Analysis 2089.2.3 Results and Discussion 2099.2.3.1 Viscoeleastic Properties 2109.2.3.2 Hardness and Modulus by Nanoindentation 2149.3 Conclusion 219References 22010 Nanoindentation of Hybrid Foams 223Anne Jung, Zhaoyu Chen and Stefan Diebels10.1 Introduction 22310.1.1 Motivation 22310.1.2 State of the art of Nanoindentation of Metal and Metal Foam 22610.2 Sample Material and Preparation 23010.2.1 Al Material and Coating Process 23010.2.2 Sample Preparation for Nanoindentation 23110.3 Nanoindentation Experiments 23210.3.1 Experimental Setup 23210.3.2 Results and Discussion 23210.4 Conclusions and Outlook 239Acknowledgements 240References 24011 AFM-based Nanoindentation of Cellulosic Fibers 247Christian Ganser and Christian Teichert11.1 Introduction 24711.2 Experimental 24811.2.1 AFM Instrumentation 24811.2.2 AFM-based Nanoindentation 25011.2.3 Comparison with Results of Classical NI 25511.2.4 Sample Preparation 25611.3 Mechanical Properties of Cellulose Fibers 25711.3.1 Pulp Fibers 25711.3.2 Swollen Viscose Fibers 25911.4 Conclusions and Outlook 265Acknowledgments 265References 26612 Evaluation of Mechanical and Tribological Properties of Coatings for Stainless Steel 269A.Mina, J.C. Caicedo,W. Aperador, M. Mozafari and H.H. Caicedo12.1 Introduction 26912.2 Experimental Details 27012.3 Results and Discussion 27112.3.1 Crystal Lattice Arrangement of β-TCP/Ch Coatings 27112.3.2 Surface Coating Analysis 27212.3.3 Morphological Analysis of the β-TCP-Ch Coatings 27412.3.4 Mechanical Properties 27612.3.5 Tribological Properties 27912.3.6 SurfaceWear Analysis 28012.3.7 Adhesion Behaviour 28112.4 Conclusions 283Acknowledgements 283References 28313 Nanoindentation in Metallic Glasses 287Vahid Nekouie, Anish Roy and Vadim V. Silberschmidt13.1 Introduction 28713.1.1 Motivation 28713.1.2 Nanoindentation Studies of Metallic Glasses 28813.1.2.1 Pile-up and Sink-in 29113.1.2.2 Indentation Size Effect 29313.2 Experimental Studies 29613.2.1 Nano Test Platform III Indentation System 29613.2.2 Calibration 29713.2.2.1 Frame Compliance 29813.2.2.2 Cross-hair Calibration 29813.2.2.3 Indenter Area Function 29813.2.3 Experimental Procedure 30113.2.4 Results and Discussion 30113.3 Conclusions 307References 308Part II 31314 Molecular Dynamics Modeling of Nanoindentation 315C.J. Ruestes, E.M. Bringa, Y. Gao and H.M. Urbassek14.1 Introduction 31514.2 Methods 31614.2.1 The Indentation Tip 31814.2.2 Control Methods Used in Experiment and in MD Simulations 31914.2.3 Penetration Rate 32014.3 Interatomic Potentials 32114.3.1 Elastic Constants 32114.3.2 Generalized Stacking Fault Energies 32214.4 Elastic Regime 32414.5 The Onset of Plasticity 32514.5.1 Evolution of the Dislocation Network 32514.5.2 Contact Area and Hardness 32714.5.3 Indentation Rate Effect 32814.5.4 Tip Diameter Effect 32914.6 The Plastic Zone: Dislocation Activity 32914.6.1 Face-centered Cubic Metals 32914.6.2 Body-centered Cubic Metals 33014.6.3 Quantification of Dislocation Length and Density 33114.6.4 Pile-up 33314.6.5 Geometrically-necessary Dislocations and the Identification of Intrinsic Length-scales from Hardness Simulations 33414.7 Outlook 336Acknowledgements 337References 33715 Continuum Modelling and Simulation of Indentation in Transparent Single Crystalline Minerals and Energetic Solids 347J.D. Clayton, B.B. Aydelotte, R. Becker, C.D. Hilton and J. Knap15.1 Introduction 34715.2 Theory: MaterialModelling 34915.2.1 General Multi-field Continuum Theory 34915.2.2 Crystal Plasticity Theory 35015.2.3 Phase FieldTheory for Twinning 35115.3 Application: Indentation of RDX Single Crystals 35215.3.1 Review of PriorWork 35315.3.2 New Results and Analysis 35415.4 Application: Indentation of Calcite Single Crystals 35615.4.1 Review of PriorWork 35915.4.2 New Results and Analysis 36115.5 Conclusions 364Acknowledgements 365References 36516 NanoindentationModeling: From Finite Element to Atomistic Simulations 369Daniel Esqué- de los Ojos and Jordi Sort16.1 Introduction 36916.2 Scaling and Dimensional Analysis Applied to IndentationModelling 37016.2.1 Geometrical Similarity of Indenter Tips 37016.2.2 Dimensional Analysis 37116.2.3 Dimensional Analysis Applied to Extraction of Mechanical Properties 37216.3 Finite Element Simulations of Advanced Materials 37416.3.1 Nanocrystalline Porous Materials and Pressure-sensitive Models 37516.3.2 Finite Element Simulations of 1D Structures: Nanowires 37816.3.3 Continuum Crystal Plasticity Finite Element Simulations: Nanoindentation of Thin Solid Films 38016.4 Nucleation and Interaction of Dislocations During Single Crystal Nanoindentaion: Atomistic Simulations 38316.4.1 Dislocation Dynamics Simulations 38316.4.2 Molecular Dynamics Simulations 385References 38617 Nanoindentation in silico of Biological Particles 393Olga Kononova, Kenneth A. Marx and Valeri Barsegov17.1 Introduction 39317.2 ComputationalMethodology of Nanoindentation in silico 39517.2.1 Molecular Modelling of Biological Particles 39517.2.2 Coarse-graining: Self-organized Polymer (SOP) Model 39617.2.3 MultiscaleModeling Primer: SOP Model Parameterization for Microtubule Polymers 39817.2.4 Using Graphics Processing Units as Performance Accelerators 39917.2.5 Virtual AFM Experiment: Forced Indentation in silico of Biological Particles 40117.3 Biological Particles 40317.3.1 Cylindrical Particles: Microtubule Polymers 40317.3.2 Spherical Particles: CCMV Shell 40417.4 Nanoindentation in silico: Probing Reversible Changes in Near-equilibrium Regime 40617.4.1 Probing Reversible Transitions 40617.4.2 Studying Near-equilibrium Dynamics 40717.5 Application of in silico Nanoindentation: Dynamics of Deformation of MT and CCMV 40917.5.1 Long Polyprotein – Microtubule Protofilament 40917.5.2 Cylindrical Particle – Microtubule Polymer 41117.5.3 Spherical Particle – CCMV Protein Shell 41617.6 Concluding Remarks 421References 42418 Modeling and Simulations in Nanoindentation 429Yi Sun and Fanlin Zeng18.1 Introduction 42918.2 Simulations of Nanoindention on Polymers 43018.2.1 Models and Simulation Methods 43018.2.2 Load-displacement Responses 43118.2.3 Hardness and Young’s Modulus 43318.2.4 The Mechanism of Mechanical Behaviours and Properties 43718.3 Simulations of Nanoindention on Crystals 44118.3.1 Models and Simulation Methods 44218.3.2 The Load-displacement Responses 44418.3.3 Dislocation Nucleation 44618.3.4 Mechanism of Dislocation Emission 44918.4 Conclusions 455Acknowledgments 456References 45619 Nanoindentation of Advanced Ceramics: Applications to ZrO2 Materials 459Joan Josep Roa Rovira, Emilio Jiménez Piqué andMarc J. Anglada Gomila19.1 Introduction 45919.2 IndentationMechanics 46019.2.1 Deformation Mechanics 46019.2.2 Elastic Contact 46119.2.3 Elasto/plastic Contact 46219.3 Fracture Toughness 46219.4 Coatings 46319.4.1 Coating Hardness 46319.4.2 Coating Elastic Modulus 46419.5 Issues for Reproducible Results 46419.6 Applications of Nanoindentation to Zirconia 46519.6.1 Hardness and Elastic Modulus 46619.6.2 Stress–strain Curve and Phase Transformation 46719.6.3 Plastic Deformation Mechanisms 46819.6.4 Mechanical Properties of Damaged Surfaces 46819.6.5 Relation Between Microstructure and Local Mechanical Properties byMassive Nanoindentation Cartography 47119.7 Conclusions 472Acknowledgements 472References 47320 FEM Simulation of Nanoindentation 481F. Pöhl, W. Theisen and S. Huth20.1 Introduction 48120.2 Indentation of Isotropic Materials 48220.3 Indentation of Thin Films 48920.4 Indentation of a Hard Phase Embedded in Matrix 490References 49521 Investigations Regarding Plastic Flow Behaviour and Failure Analysis on CrAlN Thin Hard Coatings 501Jan Perne21.1 Introduction 50121.2 Description of the Method 50121.2.1 Flow Curve Determination 50221.2.1.1 Nanoindentation Step 50221.2.1.2 Yield Strength Determination 50221.2.1.3 Flow Curve Determination by Iterative Simulation 50321.2.1.4 Determination of Strain Rate and Temperature Dependency 50321.2.2 Failure Criterion Determination with Nano-scratch Analysis 50321.3 Investigations into the CrAlN Coating System 50421.3.1 Flow curve dependency on chemical composition and microstructure 50421.3.2 Strain Rate Dependency of Different CrN-AlN Coating Systems 50621.3.3 Failure criterion determination on a CrN/AlN nanolaminate 50721.4 Concluding Remarks 509References 51122 Scale Invariant Mechanical Surface Optimization 513Norbert Schwarzer22.1 Introduction 51322.1.1 Interatomic Potential Description of Mechanical Material Behavior 51322.1.2 The Effective Indenter Concept and Its Extension to Layered Materials 51422.1.3 About Extensions of the Oliver and Pharr Method 51422.1.3.1 Making the Classical Oliver and Pharr Method Fit for Time Dependent Mechanical Behavior 51522.1.4 Introduction to the Physical Scratch and/or Tribological Test and its Analysis 51522.1.5 Illustrative Hypothetical Example for Optimization Against Dust Impact 51522.1.6 About the Influence of Intrinsic Stresses 51622.2 Theory 51722.2.1 First Principle Based Interatomic Potential Description of Mechanical Material Behavior 51722.2.2 The Effective Indenter Concept 52122.2.3 An Oliver and Pharr Method for Time Dependent Layered Materials 52222.2.4 Theory for the Physical Scratch and/or Tribological Test 53322.2.5 From Quasi-Static Experiments and Parameters to DynamicWear, Fretting and Tribological Tests 53422.2.6 Including Biaxial Intrinsic Stresses 53722.3 The Procedure 54022.4 Discussion by Means of Examples 54422.5 Conclusions 555Acknowledgements 555Referencess 55623 Modelling and Simulations of Nanoindentation in Single Crystals 561Qiang Liu,Murat Demiral, Anish Roy and Vadim V. Silberschmidt23.1 Introduction 56123.2 Review of IndentationModelling 56423.3 Crystal PlasticityModelling of Nanoindentation 56523.3.1 Indentation of F.C.C. Copper Single Crystal 56723.3.2 Indentation of B.C.C. Ti-64 56923.3.3 Indentation of B.C.C. Ti-15-3-3 57123.4 Conclusions 573References 57424 Computer Simulation and Experimental Analysis of Nanoindentation Technique 579A. Karimzadeh,M.R. Ayatollahi and A. Rahimi24.1 Introduction 57924.2 Finite Element Simulation for Nanoindentation 58024.3 Finite Element Modeling 58024.3.1 Geometry 58024.3.2 Material Characteristics 58124.3.3 Boundary Condition 58224.3.4 Interaction 58224.3.5 Meshing 58224.4 Verification of Finite Element Simulation 58324.4.1 Nanoindentation Experiment on Al 1100 58424.4.2 Comparison Between Simulation and Experimental Results for Al 1100 58424.4.2.1 Load-displacement 58424.4.2.2 Hardness 58824.5 Molecular Dynamic Modeling for Nanoindentation 59124.5.1 Simulation Procedure 59224.6 Results of Molecular Dynamic Simulation 59524.7 Conclusions 597References 59725 Atomistic Simulations of Adhesion, Indentation andWear at Nanoscale 601Jun Zhong, Donald J. Siegel, Louis G. Hector, Jr. and James B. Adams25.1 Introduction 60125.2 Methodologies 60425.2.1 Density FunctionalTheory 60425.2.1.1 The Exchange–correlation Functional 60525.2.1.2 PlaneWaves and Supercell 60625.2.2 Pseudopotential Approximation 60625.2.3 Molecular Dynamics 60725.2.3.1 Equations of Motion 60725.2.3.2 Algorithms 60825.2.3.3 Statistical Ensembles 60825.2.3.4 Interatomic Potentials 60825.2.3.5 Ab initio Molecular Dynamics 60925.2.4 Some Commercial Software 61125.2.4.1 The VASP 61125.2.4.2 The LAMMPS 61125.3 Density Functional Study of Adhesion at the Metal/Ceramic Interfaces 61225.3.1 Calculations 61225.3.2 Effect of Surface Energies in theWsep 61425.3.3 Conclusions 61525.4 Molecular Dynamics Simulations of Nanoindentation 61625.4.1 Empirical Modeling 61625.4.1.1 Modeling Geometry and Simulation Procedures 61725.4.1.2 Results and discussions 61825.4.1.3 Conclusions 62225.4.2 Ab initio Modeling 62225.4.2.1 Modeling Geometry and Simulation Procedures 62225.4.2.2 Results and Discussions 62425.5 Molecular Dynamics Simulations of AdhesiveWear on the Al-substrate 62825.5.1 Modeling Geometry and Simulation Procedures 62925.5.2 Results and Discussions 63025.5.2.1 One CommonWear Sequence 63025.5.2.2 Thermal Analysis for theWear Sequence 63125.5.2.3 Wear Rate Analyses 63225.6 Summary and Prospect 636Acknowledgments 638References 63826 Multiscale Model for Nanoindentation in Polymer and Polymer Nanocomposites 647Rezwanur Rahman26.1 Introduction 64726.2 Modeling Scheme 64826.2.1 Details of the MD Simulation 64926.3 Nanoindentation Test 65026.4 Theoretically and Experimentally Determined Result 65126.5 Multiscale of Complex Heterogeneous Materials 65126.5.1 Introduction to Peridynamics 65226.5.2 Nonlocal Multiscale Modeling using Peridynamics: Linking Macro- to Nano-scales 65426.6 MultiscaleModeling for Nanoindentation in Epoxy: EPON 862 65526.7 UnifiedTheory for MultiscaleModeling 65826.8 Conclusion 658References 659Index 663