1 969 kr

Beställningsvara. Skickas inom 5-8 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

The book is an almost self-contained presentation of the most important concepts and results in viability and invariance. The viability of a set K with respect to a given function (or multi-function) F, defined on it, describes the property that, for each initial data in K, the differential equation (or inclusion) driven by that function or multi-function) to have at least one solution. The invariance of a set K with respect to a function (or multi-function) F, defined on a larger set D, is that property which says that each solution of the differential equation (or inclusion) driven by F and issuing in K remains in K, at least for a short time.The book includes the most important necessary and sufficient conditions for viability starting with Nagumo's Viability Theorem for ordinary differential equations with continuous right-hand sides and continuing with the corresponding extensions either to differential inclusions or to semilinear or even fully nonlinear evolution equations, systems and inclusions. In the latter (i.e. multi-valued) cases, the results (based on two completely new tangency concepts), all due to the authors, are original and extend significantly, in several directions, their well-known classical counterparts.

  • New concepts for multi-functions as the classical tangent vectors for functions
  • Provides the very general and necessary conditions for viability in the case of differential inclusions, semilinear and fully nonlinear evolution inclusions
  • Clarifying examples, illustrations and numerous problems, completely and carefully solved
  • Illustrates the applications from theory into practice
  • Very clear and elegant style

Produktinformation

  • Utgivningsdatum2007-06-04
  • Mått165 x 240 x undefined mm
  • Vikt781 g
  • FormatInbunden
  • SpråkEngelska
  • SerieNorth-Holland Mathematics Studies
  • Antal sidor356
  • FörlagElsevier Science
  • ISBN9780444527615

Du kanske också är intresserad av