Kommande
bokomslag Variational and Information Flows in Machine Learning and Optimal Transport
Vetenskap & teknik

Variational and Information Flows in Machine Learning and Optimal Transport

Wuchen Li Bernhard Schmitzer Gabriele Steidl François-Xavier Vialard Christian Wald

Pocket

1369:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

  • 190 sidor
  • 2025
This book is based on lectures given at the Mathematisches Forschungsinstitut Oberwolfach on "Computational Variational Flows in Machine Learning and Optimal Transport". Variational and stochastic flows on measure spaces are ubiquitous in machine learning and generative modeling. Optimal transport and diffeomorphic flows provide powerful frameworks to analyze such trajectories of distributions with elegant notions from differential geometry, such as geodesics, gradient and Hamiltonian flows. Recently, mean field control and mean field games offered a general optimal control variational view on learning problems. The four independent chapters in this book address the question of how the presented tools lead us to better understanding and further development of machine learning and generative models.
  • Författare: Wuchen Li, Bernhard Schmitzer, Gabriele Steidl, François-Xavier Vialard, Christian Wald
  • Format: Pocket/Paperback
  • ISBN: 9783031927300
  • Språk: Engelska
  • Antal sidor: 190
  • Utgivningsdatum: 2025-06-27
  • Förlag: Birkhauser Verlag AG