Understanding UMTS Radio Network Modelling, Planning and Automated Optimisation
Theory and Practice
Inbunden, Engelska, 2006
Av Maciej Nawrocki, Hamid Aghvami, Mischa Dohler, Poland) Nawrocki, Maciej (Wroclaw University of Technology, UK) Aghvami, Hamid (King's College London, France) Dohler, Mischa (France Telecom R&D
2 199 kr
Produktinformation
- Utgivningsdatum2006-04-21
- Mått173 x 252 x 36 mm
- Vikt1 152 g
- SpråkEngelska
- Antal sidor544
- FörlagJohn Wiley & Sons Inc
- EAN9780470015674
Du kanske också är intresserad av
Ultra-Wideband Antennas and Propagation
Ben Allen, Mischa Dohler, Ernest Okon, Wasim Malik, Anthony Brown, David Edwards, UK) Allen, Ben (The University of Oxford, France) Dohler, Mischa (France Telecom R&D, UK) Okon, Ernest (BAE Systems Advanced Technology Centre, UK) Malik, Wasim (The University of Oxford, UK) Brown, Anthony (The University of Manchester, UK) Edwards, David (The University of Oxford
2 109 kr
Tillhör följande kategorier
Maciej J. Nawrocki currently works for the Centre for Telecommunications Research at King’s College London. His areas of interest include WCDMA based cellular networks, CDMA network planning methods, optimization methods for 3G systems radio planning and, latterly, efficient modeling algorithms for UMTS radio network organization. Mischa Dohler has a PhD from Kings College London where he has also held a lecturing post. His areas of interest include propagation, coding, transceiver design and link level simulations.Hamid Aghvami is presently Director of the Centre for Telecommunications Research at King’s College London. He is considered a world expert in the field of personal and mobile radio communications and is a fellow of the Royal Academy of Engineering, a fellow member of the IEE and senior member of the IEEE.
- Preface xiiiAcknowledgments xviiList of Acronyms xixNotes on Editors and Contributors xxixPART I INTRODUCTION 11 Modern Approaches to Radio Network Modelling and Planning 3Maciej J. Nawrocki, Mischa Dohler and A. Hamid Aghvami1.1 Historical aspects of radio network planning 31.2 Importance and limitations of modelling approaches 51.3 Manual versus automated planning 7References 92 Introduction to the UTRA FDD Radio Interface 11Peter Gould2.1 Introduction to CDMA-based networks 112.2 The UTRA FDD air interface 152.2.1 Spreading codes 152.2.2 Common physical channels 202.2.3 Dedicated physical channels 272.3 UTRA FDD key mechanisms 292.3.1 Cell breathing and soft capacity 292.3.2 Interference and power control 312.3.3 Soft handover and compressed mode 322.4 Parameters that require planning 342.4.1 Signal path parameters 342.4.2 Power allocation 352.4.3 System settings 35References 353 Spectrum and Service Aspects 37Maciej J. Grzybkowski, Ziemowit Neyman and Marcin Ney3.1 Spectrum aspects 373.1.1 Spectrum requirements for UMTS 383.1.2 Spectrum identified for UMTS 393.1.3 Frequency arrangements for the UMTS terrestrial component 393.1.4 Operator spectrum demands 453.2 Service features and characteristics 46References 524 Trends for the Near Future 55Maciej J. Nawrocki, Mischa Dohler and A. Hamid Aghvami4.1 Introduction 554.2 Systems yet to be deployed 564.2.1 UTRA TDD 564.2.2 TD-SCDMA 574.2.3 Satellite segment 584.3 Enhanced coverage 604.3.1 Ultra High Sites (UHS) 614.3.2 High Altitude Platform System (HAPS) 614.4 Enhanced capacity 614.4.1 Hierarchical Cell Structures (HCS) 614.4.2 High Speed Downlink Packet Access (HSDPA) 624.4.3 High Speed Uplink Packet Access (HSUPA) 634.4.4 Orthogonal Frequency Division Modulation (OFDM) 644.5 Heterogeneous approaches 644.5.1 Wireless LANs 644.5.2 Wireless MANs (WiMAX) 654.6 Concluding Remarks 65References 65PART II MODELLING 675 Propagation Modelling 69Kamil Staniec, Maciej J. Grzybkowski and Karsten Erlebach5.1 Radio channels in wideband CDMA systems 695.1.1 Electromagnetic wave propagation 695.1.2 Wideband radio channel characterisation 735.1.3 Introduction to deterministic methods in modelling WCDMA systems 755.1.4 Deterministic methods: comparison of performance 795.2 Application of empirical and deterministic models in picocell planning 805.2.1 Techniques for indoor modelling 805.2.2 Techniques for outdoor-to-indoor modelling 825.3 Application of empirical and deterministic models in microcell planning 845.3.1 COST 231 Walfisch–Ikegami model 855.3.2 Manhattan model 875.3.3 Other microcellular propagation models 885.4 Application of empirical and deterministic models in macrocell planning 905.4.1 Modified Hata 905.4.2 Other models 915.5 Propagation models of interfering signals 945.5.1 ITU-R 1546 model 945.5.2 ITU-R 452 model 1005.5.3 Statistics in the Modified Hata model 1045.6 Radio propagation model calibration 1055.6.1 Tuning algorithms 1065.6.2 Single and multiple slope approaches 108Appendix: Calculation of inverse complementary cumulative normal distribution function 110References 1116 Theoretical Models for UMTS Radio Networks 115Hans-Florian Geerdes, Andreas Eisenblätter, Piotr M. S³obodzian, Mikio Iwamura, Mischa Dohler, Rafa³ Zdunek, Peter Gould and Maciej J. Nawrocki6.1 Antenna modelling 1156.1.1 Mobile terminal antenna modelling 1176.1.2 Base station antenna modelling 1186.2 Link level model 1226.2.1 Relation to other models 1236.2.2 Link level simulation chain 1246.2.3 Link level receiver components 1266.2.4 Link level receiver detectors 1286.3 Capacity considerations 1346.3.1 Capacity of a single cell system 1346.3.2 Downlink power-limited capacity 1346.3.3 Uplink power-limited capacity 1376.4 Static system level model 1396.4.1 Link level aspects 1406.4.2 Propagation data 1416.4.3 Equipment modelling 1426.4.4 Transmit powers and power control 1446.4.5 Services and user-specific properties 1466.4.6 Soft handover 1476.4.7 Complete model 1486.4.8 Applications of a static system-level network model 1496.4.9 Power control at cell level 1526.4.10 Equation system solving 1576.5 Dynamic system level model 1616.5.1 Similarities and differences between static and dynamic models 1616.5.2 Generic system model 1626.5.3 Input/output parameters 1646.5.4 Mobility models 1646.5.5 Traffic models 1656.5.6 Path loss models 1676.5.7 Shadowing models 1686.5.8 Modelling of small scale fading 1696.5.9 SIR calculation 170References 1727 Business Modelling Goals and Methods 177Marcin Ney7.1 Business modelling goals 1777.1.1 New business planning 1777.1.2 Infrastructure development 1787.1.3 Budgeting 1797.2 Business modelling methods 1797.2.1 Trends and statistical approach 1807.2.2 Benchmarking and drivers 1817.2.3 Detailed quantitative models 1817.2.4 Other non-quantitative methods 182References 183PART III PLANNING 1858 Fundamentals of Business Planning for Mobile Networks 187Marcin Ney8.1 Process description 1878.1.1 Market analysis and forecasting 1878.1.2 Modelling the system 1898.1.3 Financial issues 1908.1.4 Recommendations 1908.2 Technical investment calculation 1918.2.1 CAPEX calculation methods 1918.2.2 OPEX calculation methods 1968.2.3 The role of drivers: Sanity checking 1978.3 Revenue and non-technical related investment calculation 1988.3.1 Input parameters and assumptions 1988.3.2 Revenue calculation methods 1998.3.3 Non-technical related investments 1998.4 Business planning results 1998.4.1 Business plan output parameters 2008.4.2 Business plan assessment methods 200References 2019 Fundamentals of Network Characteristics 203Maciej J. Nawrocki9.1 Power characteristics estimation 2039.1.1 Distance to home base station dependency 2039.1.2 Traffic load dependency 2079.2 Network capacity considerations 2109.2.1 Irregular base station distribution grid 2109.2.2 Improper antenna azimuth arrangement 2129.3 Required minimum network size for calculations 214References 21810 Fundamentals of Practical Radio Access Network Design 219Ziemowit Neyman and Mischa Dohler10.1 Introduction 21910.2 Input parameters 22210.2.1 Base station classification 22210.2.2 Hardware parameters 22210.2.3 Environmental specifics 22910.2.4 Technology essentials 23110.3 Network dimensioning 23810.3.1 Coverage versus capacity 23810.3.2 Cell coverage 23910.3.3 Cell Erlang capacity 24910.4 Detailed network planning 25110.4.1 Site-to-site distance and antenna height 25210.4.2 Site location 25410.4.3 Sectorisation 25610.4.4 Antenna and sector direction 25910.4.5 Electrical and mechanical tilt 26010.4.6 Temporal aspects in HCS 263References 26811 Compatibility of UMTS Systems 271Maciej J. Grzybkowski11.1 Scenarios of interference 27211.1.1 Interference between UMTS and other systems 27211.1.2 Intra-system interference 27411.2 Approaches to compatibility calculations 27511.2.1 Principles of compatibility calculations 27511.2.2 Minimum Coupling Loss (MCL) method 28011.2.3 Monte Carlo (MC) method 28311.2.4 Propagation models for compatibility calculations 28411.2.5 Characteristics of UTRA stations for the compatibility calculations 28611.3 Internal electromagnetic compatibility 28611.4 External electromagnetic compatibility 29211.4.1 UMTS TDD versus DECT WLL 29211.4.2 Compatibility between UMTS and Radio Astronomy Service 29411.4.3 Compatibility between UMTS and MMDS 29511.5 International cross-border coordination 29611.5.1 Principles of coordination 29611.5.2 Propagation models for coordination calculations 29711.5.3 Application of preferential frequencies 29811.5.4 Use of preferential codes 30011.5.5 Examples of coordination agreements 301References 30512 Network Design – Specialised Aspects 309Marcin Ney, Peter Gould and Karsten Erlebach12.1 Network infrastructure sharing 30912.1.1 Network sharing methods 30912.1.2 Legal aspects 31312.1.3 Drivers for sharing 31412.2 Adjacent channel interference control 31512.3 Fundamentals of Ultra High Site deployment 318References 320PART IV OPTIMISATION 32113 Introduction to Optimisation of the UMTS Radio Network 323Roni Abiri and Maciej J. Nawrocki13.1 Automation of radio network optimisation 32413.2 What should be optimised and why? 32513.3 How do we benchmark the optimisation results? 32613.3.1 Location based information 32713.3.2 Sectors and network statistical data 32813.3.3 Cost and optimisation efforts 330References 33114 Theory of Automated Network Optimisation 333Alexander Gerdenitsch, Andreas Eisenblätter, Hans-Florian Geerdes, Roni Abiri, Michael Livschitz, Ziemowit Neyman and Maciej J. Nawrocki14.1 Introduction 33314.1.1 From practice to optimisation models 33414.1.2 Optimisation techniques 33514.2 Optimisation parameters for static models 33914.2.1 Site location and configuration 34014.2.2 Antenna related parameter 34014.2.3 CPICH power 34414.3 Optimisation targets and objective function 34514.3.1 Coverage 34514.3.2 Capacity 34614.3.3 Soft handover areas and pilot pollution 34714.3.4 Cost of implementation 34814.3.5 Combination and further possibilities 34814.3.6 Additional practical and technical constraints 34814.3.7 Example of objective function properties 34914.4 Network optimisation with evolutionary algorithms 35414.4.1 Genetic algorithms 35514.4.2 Evolution strategies 35714.4.3 Practical implementation of GA for tilt and CPICH 36114.5 Optimisation without simulation 36614.5.1 Geometry-based configuration methods 36614.5.2 Coverage-driven approaches 36814.5.3 Advanced models 36914.5.4 Expected coupling matrices 37214.6 Comparison and suitability of algorithms 37314.6.1 General strategies 37414.6.2 Discussion of methods 37414.6.3 Combination of methods 375References 37515 Automatic Network Design 379Roni Abiri, Ziemowit Neyman, Andreas Eisenblätter and Hans-Florian Geerdes15.1 The key challenges in UMTS network optimisation 37915.1.1 Problem definition 37915.1.2 Matching UMTS coverage to GSM 38015.1.3 Supporting high bit rate data services 38115.1.4 Handling dual technology networks 38215.2 Engineering case studies for network optimisation 38215.2.1 Example network description 38315.2.2 Pre-launched (unloaded) network optimisation 38315.2.3 Loaded network optimisation 38915.3 Case study: optimising base station location and parameters 39515.3.1 Data setting 39615.3.2 Optimisation approach 39715.3.3 Results 39915.3.4 Conclusions 402References 40316 Auto-tuning of RRM Parameters in UMTS Networks 405Zwi Altman, Hervé Dubreil, Ridha Nasri, Ouassim Ben Amor, Jean-Marc Picard, Vincent Diascorn and Maurice Clerc16.1 Introduction 40516.2 Radio resource management for controlling network quality 40616.3 Auto-tuning of RRM parameters 40816.3.1 Parameter selection for auto-tuning 40816.3.2 Target selection for auto-tuning 41016.3.3 Fuzzy logic controllers (FLC) 41016.3.4 Case study: Auto-tuning of macrodiversity 41216.4 Optimisation strategies of the auto-tuning process 41516.4.1 Off-line optimisation using Particle Swarm approach 41616.4.2 On-line optimisation using reinforcement learning 42116.5 Conclusions 425Acknowledgement 425References 42517 UTRAN Transmission Infrastructure Planning and Optimisation 427Karsten Erlebach, Zbigniew Jóskiewicz and Marcin Ney17.1 Introduction 42717.1.1 Short UTRAN overview 42817.1.2 Requirements for UTRAN transmission infrastructure 42817.2 Protocol solutions for UTRAN transmission infrastructure 43017.2.1 Main considerations for ATM layer protocols in current 3G networks 43017.2.2 MPLS-architecture for future 3G transmissions 44317.2.3 The path to direct IP transmission networking 44417.3 End-to-end transmission dimensioning approach 44617.3.1 Dimensioning of Node B throughput 44617.3.2 Traffic dimensioning of the ATM network 45117.3.3 Traffic dimensioning of the IP-Network 45217.4 Network solutions for UTRAN transmission infrastructure 45617.4.1 Leased lines 45617.4.2 Point-to-point systems 45717.4.3 Point-to-multipoint systems – LMDS 46017.4.4 WiMAX as a potential UTRAN backhaul solution 46817.5 Efficient use of WiMAX in UTRAN 47217.5.1 Dimensioning of WiMAX for UTRAN infrastructure 47217.5.2 Current WiMAX limitations 47317.6 Cost-effective radio solution for UTRAN infrastructure 47417.6.1 RF planning aspects 47417.6.2 Throughput dimensioning 47517.6.3 Methods of finding optimal LMDS network configurations 47617.6.4 Costs evaluation of UTRAN infrastructure – software example 48517.6.5 Example calculations and comparison of results 487References 493Concluding Remarks 497Index 501
"…this book really fills a gap in the existing literature …it really helps one understand the WCDMA network…" (IEEE Communications magazine, August 2007)