Ultra Wideband Wireless Communication
Inbunden, Engelska, 2006
Av Huseyin Arslan, Huseyin Arslan, Zhi Ning Chen, Maria-Gabriella Di Benedetto
2 159 kr
Produktinformation
- Utgivningsdatum2006-10-31
- Mått163 x 241 x 30 mm
- Vikt842 g
- FormatInbunden
- SpråkEngelska
- Antal sidor528
- FörlagJohn Wiley & Sons Inc
- ISBN9780471715214
Tillhör följande kategorier
HÜSEYIN ARSLAN, PHD, is Assistant Professor at the University of South Florida. Dr. Arslan’s research interests center on advanced signal processing techniques at the physical layer, with cross-layer design for network adaptivity and quality of service control. He worked at Ericsson Research for about five years and continues his close relations with wireless industries as a consultant and with university sponsored research.ZHI NING CHEN, PHD, is Adjunct Professor in the Electromagnetics Academy at Zhejiang University, China and at the National University of Singapore. Dr. Chen is also Lead Scientist at the Institute for Infocomm Research. MARIA-GABRIELLA DI BENEDETTO, PHD, is Professor of Telecommunications at the University of Rome La Sapienza, Italy. Dr. Di Benedetto is active in fostering the development of UWB telecommunication systems in Europe and is the Director at Infocom for two European IST projects.
- Preface xvContributors xixChapter 1 Introduction to Ultra Wideband 1Hüseyin Arslan and Maria-Gabriella Di Benedetto1.1 Introduction 11.1.1 Benefits of UWB 21.1.2 Applications 31.1.3 Challenges 31.2 Scope of the Book 4Chapter 2 UWB Channel Estimation and Synchronization 11Irena Maravic and Martin Vetterli2.1 Introduction 112.2 Channel Estimation at SubNyquist Sampling Rate 142.2.1 UWB Channel Model 142.2.2 Frequency-Domain Channel Estimation 152.2.3 Polynomial Realization of the Model-Based Methods 162.2.4 Subspace-Based Approach 202.2.5 Estimation of Closely Spaced Paths 242.3 Performance Evaluation 252.3.1 Analysis of Noise Sensitivity 252.3.2 Computational Complexity and Alternative Solutions 272.3.3 Numerical Example 282.4 Estimating UWB Channels with Frequency-Dependent Distortion 292.4.1 Algorithm Outline 312.5 Channel Estimation from Multiple Bands 322.5.1 Filter Bank Approach 322.5.2 Estimation from Nonadjacent Bands 322.6 Low-Complexity Rapid Acquisition in UWB Localizers 342.6.1 Two-Step Estimation 362.7 Conclusions 39Chapter 3 Ultra Wideband Geolocation 43Sinan Gezici, Zafer Sahinoglu, Hisashi Kobayashi, and H. Vincent Poor3.1 Introduction 433.2 Signal Model 443.3 Positioning Techniques 443.3.1 Angle of Arrival 453.3.2 Received Signal Strength 493.3.3 Time-Based Approaches 513.4 Main Sources of Error in Time-Based Positioning 523.4.1 Multipath Propagation 523.4.2 Multiple Access Interference 533.4.3 Nonline-of-Sight Propagation 533.4.4 High Time Resolution of UWB Signals 543.5 Ranging and Positioning 553.5.1 Relationship Between Ranging and Optimal Positioning Algorithms 553.5.2 ToA Estimation Algorithms 583.5.3 Two-Way Ranging Protocols 693.6 Location-Aware Applications 703.7 Conclusions 71Chapter 4 UWB Modulation Options 77Hüseyin Arslan, Ismail Güenc¸, and Sadia Ahmed4.1 Introduction 774.2 UWB Signaling Techniques 784.2.1 UWB-IR Signaling 794.2.2 Multiband UWB 834.2.3 Multicarrier UWB 854.2.4 OFDM 854.3 Data Mapping 874.3.1 Binary Data Mapping Schemes 874.3.2 M-ary Data Mapping Schemes 894.4 Spectral Characteristics 914.5 Data Mapping and Transceiver Complexity 924.6 Modulation Performances in Practical Conditions 934.6.1 Effects of Multipath 934.6.2 Effects of Multiple Access Interference 954.6.3 Effects of Timing Jitter and Finger Estimation Error 964.7 Conclusion 99Chapter 5 Ultra Wideband Pulse Shaper Design 103Zhi Tian, Timothy N. Davidson, Xiliang Luo, Xianren Wu, and Georgios B. Giannakis5.1 Introduction 1035.2 Transmit Spectrum and Pulse Shaper 1055.3 FIR Digital Pulse Design 1085.4 Optimal UWB Single Pulse Design 1105.4.1 Parks–McClellan Algorithm 1105.4.2 Optimal UWB Pulse Design via Direct Maximization of NESP 1115.4.3 Constrained Frequency Response Approximation 1135.4.4 Constrained Frequency Response Design with Linear Phase Filters 1145.5 Optimal UWB Orthogonal Pulse Design 1155.5.1 Orthogonality Formulation 1155.5.2 Sequential UWB Pulse Design 1175.5.3 Sequential UWB Pulse Design with Linear Phase Filters 1185.6 Design Examples and Comparisons 1205.6.1 Single-Pulse Designs and their Spectral Utilization Efficiency 1205.6.2 Multiband Pulse Design 1225.6.3 Multiple Orthogonal Pulse Design 1235.6.4 Pulse Designs for Narrowband Interference Avoidance 1255.6.5 Impact of Pulse Designs on Transceiver Power Efficiency 1265.7 Conclusions 128Chapter 6 Antenna Issues 131Zhi Ning Chen6.1 Introduction 1316.2 Design Considerations 1326.2.1 Description of Antenna Systems 1326.2.2 Single-Band and Multiband Schemes 1346.2.3 Source Pulses 1366.2.4 Transmit Antenna and PDS 1366.2.5 Transmit–Receive Antenna System 1416.3 Antenna and Pulse versus BER Performance 1486.3.1 Pulsed UWB System 1486.3.2 Effects of Antennas and Pulses 151Chapter 7 Ultra Wideband Receiver Architectures 157Hüseyin Arslan7.1 Introduction 1577.2 System Model 1587.3 UWB Receiver Related Issues 1607.3.1 Sampling 1607.3.2 UWB Channel and Channel Parameters Estimation 1617.3.3 Interference in UWB 1647.3.4 Other Receiver-Related Issues 1657.4 TH-IR-UWB Receiver Options 1657.4.1 Optimal Matched Filter 1677.4.2 TR-Based Scheme 1717.4.3 Differential Detector 1757.4.4 Energy Detector 1767.5 Conclusion 178Chapter 8 Ultra Wideband Channel Modeling and Its Impact on System Design 183Chia-Chin Chong8.1 Introduction 1838.2 Principles and Background of UWB Multipath Propagation Channel Modeling 1848.2.1 Basic Multipath Propagation Mechanisms 1848.2.2 Classification of UWB Channel Models 1858.3 Channel Sounding Techniques 1878.3.1 Time-Domain Technique 1878.3.2 Frequency-Domain Technique 1888.4 UWB Statistical-Based Channel Modeling 1898.4.1 Modeling Philosophy and Mathematical Framework 1898.4.2 Large-Scale Channel Characterization 1908.4.3 Small-Scale Channel Characterization 1938.4.4 Temporal Dispersion and Correlation Properties 1978.5 Impact of UWB Channel on System Design 1998.6 Conclusion 200Chapter 9 MIMO and UWB 205Thomas Kaiser9.1 Introduction 2059.2 Potential Benefits of MIMO and UWB 2069.3 Literature Review of UWB Multiantenna Techniques 2089.3.1 Spatial Multiplexing 2089.3.2 Spatial Diversity 2099.3.3 Beamforming 2099.3.4 Related Topics 2109.4 Spatial Channel Measurements and Modeling 2119.4.1 Spatial Channel Measurements 2119.4.2 Spatial Channel Modeling 2139.5 Spatial Multiplexing 2159.6 Spatial Diversity 2169.7 Beamforming 2209.8 Conclusion and Outlook 223Chapter 10 Multiple-Access Interference Mitigation in Ultra Wideband Systems 227Sinan Gezici, Hisashi Kobayashi, and H. Vincent Poor10.1 Introduction 22710.2 Signal Model 22810.2.1 Transmitted Signal 22810.2.2 Received Signal 22910.3 Multiple-Access Interference Mitigation at the Receiver Side 23110.3.1 Maximum-Likelihood Sequence Detection 23210.3.2 Linear Receivers 23210.3.3 Iterative (Turbo) Algorithms 24010.3.4 Other Receiver Structures 24310.4 Multiple-Access Interference Mitigation at the Transmitter Side 24410.4.1 Time-Hopping Sequence Design for MAI Mitigation 24510.4.2 Pseudochaotic Time Hopping 24610.4.3 Multistage Block-Spreading UWB Access 24710.5 Concluding Remarks 248Chapter 11 Narrowband Interference Issues in Ultra Wideband Systems 255Hüseyin Arslan and Mustafa E. Sahin11.1 Introduction 25511.2 Effect of NBI in UWB Systems 25811.3 Avoiding NBI 26111.3.1 Multicarrier Approach 26111.3.2 Multiband Schemes 26311.3.3 Pulse Shaping 26411.3.4 Other NBI Avoidance Methods 26611.4 Canceling NBI 26711.4.1 MMSE Combining 26811.4.2 Frequency Domain Techniques 26811.4.3 Time–Frequency Domain Techniques 26911.4.4 Time Domain Techniques 27011.5 Conclusion and Future Research 271Chapter 12 Orthogonal Frequency Division Multiplexing for Ultra Wideband Communications 277Ebrahim Saberina and Ahmed H. Tewfik12.1 Introduction 27712.2 Multiband OFDM System 27812.2.1 Band Planning 27812.2.2 Sub-Band Hopping 27812.2.3 OFDM Modulation 28012.2.4 Frequency Repetition Spreading 28012.2.5 Time Repetition Spreading 28012.2.6 Coding 28112.2.7 Supported Bit Rates 28112.2.8 MB-OFDM Transceiver 28212.2.9 Improvement to MB-OFDM 28312.3 Multiband Pulsed-OFDM UWB system 28412.3.1 Pulsed-OFDM Transmitter 28412.3.2 Pulsed-OFDM Signal Spectrum 28412.3.3 Digital Equivalent Model and Diversity of Pulsed-OFDM 28612.3.4 Pulsed-OFDM Receiver 28812.3.5 Selecting the Up-sampling Factor 28912.4 Comparing MB-OFDM and MB-Pulsed-OFDM systems 29012.4.1 System Parameters 29012.4.2 Complexity Comparision 29012.4.3 Power Consumption Comparison 29012.4.4 Chip Area Comparison 29112.4.5 Performance Comparison 29312.5 Conclusion 295Chapter 13 UWB Networks and Applications 297Krishna M. Sivalingam and Aniruddha Rangnekar13.1 Introduction 29713.2 Background 29813.2.1 UWB Physical Layer 29813.2.2 IEEE 802.15.3 Standards 29913.3 Medium Access Protocols 30013.3.1 IEEE 802.15.3 MAC Protocol 30013.3.2 Impact of UWB Channel Acquisition Time 30313.3.3 Multiple Channels 30513.4 Network Applications 31013.5 Summary and Discussion 311Acknowledgments 311Chapter 14 Low-Bit-Rate UWB Networks 315Luca DeNardis and Gian Mario Maggio14.1 Low Data-Rate UWB Network Applications 31514.1.1 802.15.4a: A Short History 31514.1.2 The 802.15.4a PHY 31614.1.3 PHY: 802.15.4a versus 802.15.4 31614.1.4 Technical Requirements 31714.1.5 Applications 31914.2 The 802.15.4 MAC Standard 32114.2.1 Network Devices and Topologies 32114.2.2 Medium Access Strategy 32214.2.3 From 802.15.4 to 802.15.4a 32414.3 Advanced MAC Design for Low-Bit-Rate UWB Networks 32414.3.1 (UWB)2: Uncoordinated, Wireless, Baseborn Medium Access for UWB Communication Networks 32514.3.2 Transmission Procedure 32814.3.3 Reception Procedure 33114.3.4 Simulation Results 333Chapter 15 An Overview of Routing Protocols for Mobile Ad Hoc Networks 341David A. Sumy, Branimir Vojcic, and Jinghao Xu15.1 Introduction 34115.2 Ad Hoc Networks 34315.3 Routing in MANETs 34515.4 Proactive Routing 34515.4.1 DSDV 34615.4.2 WRP 34815.4.3 CGSR 35015.4.4 STAR 35115.4.5 HSR 35215.4.6 OLSR 35515.4.7 TBRPF 35615.4.8 DREAM 35815.4.9 GSR 36015.4.10 FSR 36015.4.11 HR 36215.4.12 HSLS and A-HSLS 36315.5 Reactive Routing 36415.5.1 DSR 36515.5.2 ARA 36715.5.3 ABR 36915.5.4 AODV 37215.5.5 BSR 37415.5.6 CHAMP 37615.5.7 DYMO 37715.5.8 DNVR 37815.5.9 LAR 38015.5.10 LBR 38115.5.11 MPABR 38315.5.12 NDMR 38415.5.13 PLBM 38515.5.14 RDMAR 38715.5.15 SOAR 38815.5.16 TORA 39115.6 Power-Aware Routing 39315.6.1 BEE 39415.6.2 EADSR 39515.6.3 MTPR/MBCR/MMBCR/CMMBCR 39515.6.4 PARO 39615.6.5 PAWF 39815.6.6 MFP/MIP/MFPenergy/MIPenergy 40015.7 Hybrid Routing 40015.7.1 MultiWARP 40115.7.2 SHARP 40215.7.3 SLURP 40315.7.4 ZRP 40615.7.5 AZRP 40815.7.6 IZR 40815.7.7 TZRP 40815.8 Other 41015.9 Conclusion 411Appendix 418Chapter 16 Adaptive UWB Systems 429Francesca Cuomo and Crishna Martello16.1 Introduction 42916.1.1 Related Work on Adaptive UWB Systems 43116.2 A Distributed Power-Regulated Admission Control Scheme for UWB 43216.2.1 Problem Formalization 43416.2.2 Power Selection in UWB 43516.2.3 Steps of the Access Scheme 43816.3 Performance Analysis 43916.3.1 Impact of the Initial MEI on Performance of MEI-Based Power Regulation Schemes 44216.3.2 Performance Behavior as a Function of the Offered Load 44516.4 Summary 449Chapter 17 UWB Location and Tracking—A Practical Example of an UWB-Based Sensor Network 451Ian Oppermann, Kegen Yu, Alberto Rabbachin, Lucian Stoica, Paul Cheong, Jean-Philippe Montillet, and Sakari Tiuraniemi17.1 Introduction 45117.2 Multiple Access in UWB Sensor Systems 45217.2.1 Location/Ranging Support 45317.2.2 Constraints and Implications of UWB Technologies on MAC Design 45317.3 UWB Sensor Network Case Study 45417.4 System Description—UWEN 45617.4.1 Communications System 45617.4.2 Transmitted Signal 45617.4.3 Framing Structure 45817.4.4 Location Approach 45817.5 System Implementation 45917.5.1 Transceiver Overview 45917.5.2 Transmitter 46017.5.3 UWB Pulse Generator 46217.6 Location System 46317.7 Position Calculation Methods 46817.8 Tracking Moving Objects 47317.8.1 Simulation Results 47417.9 Conclusion 476Acknowledgments 477Index 481
Mer från samma författare
Flexible and Cognitive Radio Access Technologies for 5G and Beyond
Hüseyin Arslan, Hüseyin Arslan, Ertuğrul Başar, USA) Arslan, Huseyin (Professor, University of South Florida, Electrical Engineering Deptartment, Tampa, Turkey) Basar, Ertugrul (Associate Professor, Koc University, Department of Electrical and Electronics Engineering, Istanbul, Ertuğrul Başar, Ertugrul Basar, Ba&
2 619 kr
Physical Layer Security for Wireless Sensing and Communication
Hüseyin Arslan, Haji M. Furqan, Turkey) Arslan, Huseyin (Professor, Istanbul Medipol University, Turkey) Furqan, Haji M. (Post-Doctoral Researcher, Medipol University, Communications, Signal Processing, and Networking Center, Haji M Furqan
2 159 kr