Thermoplastic Polymer Composites
Processing, Properties, Performance, Applications and Recyclability
Inbunden, Engelska, 2022
4 139 kr
Produktinformation
- Utgivningsdatum2022-11-04
- Mått178 x 254 x 55 mm
- Vikt2 105 g
- FormatInbunden
- SpråkEngelska
- Antal sidor1 024
- FörlagJohn Wiley & Sons Inc
- ISBN9781119865056
Tillhör följande kategorier
Sodagudi Francis Xavier worked as a scientist for more than 35 years at the R&D Center of Reliance Industries Ltd., Vadodara Manufacturing Division, which was also known as I.P.C.L. (Indian Petrochemicals Corporation Ltd.). He developed High Impact Polyolefin Blend Technology that was transferred to and used by Maruti Udyog Ltd. in their cars. After he received his PhD from I.I.T. Delhi in 1979, he worked as a temporary faculty member in the Center for Materials Science & Technology, I.I.T. Delhi for over 3 years. He received the award ‘Visionary Inventor 2006’ from MarkPatent.Org, for his patents (2 US Patents and 6 Indian Patents granted), as well as his work at Parul University as Director (R&D), where he led faculty and students to file 150 Patents and Copyrights and took Parul University to seventh position among all Indian Educational Institutes, as declared by the Indian Patent Office, in 2014.
- Foreword xviiPreface xix1 Introduction: Technical Background 1S.F. Xavier1.1 Introduction 21.1.1 Thermoplastics Vs. Thermoset Matrices 31.2 Composite Materials 41.3 Processing 61.3.1 Various Processing Methods 71.3.1.1 Historical Evolution 71.3.2 Extrusion 81.3.2.1 Single Screw Extruder 81.3.2.2 Twin Screw Extruder 111.3.3 Injection Molding 191.3.3.1 The Injection Molding Process 211.3.3.2 Effects on Composite Structure & Properties 231.3.4 Compression Molding 251.3.5 Other Methods of Preparation 271.3.5.1 Autoclaving 271.3.5.2 Automated Fiber Placement 281.3.6 Proprietary Thermoplastic Process 281.3.6.1 Stamping 291.3.6.2 Compression Molding 291.4 Test Methods 291.4.1 Mechanical Properties 291.4.1.A Low Speed Mechanical Properties 291.4.1.B High-Speed Mechanical Properties 411.4.1.C Impact Strength 411.4.2 Fracture Toughness (K IC) 441.4.2.1 Fracture Mechanics Testing 481.4.2.2 Mechanisms of Matrix Toughening 511.4.3 Electrical Properties 531.4.3.1 Methods of Measurement 531.4.3.2 Factors Affecting Electrical Properties 561.4.4 Thermal Properties 571.4.4.1 Thermal Resistance (R) 571.4.4.2 Thermal Conductivity (λ) 571.4.4.3 Heat Distortion Temperature (HDT) 601.4.4.4 Vicat Softening Point 631.4.4.5 Low Temperature Brittle Point 651.4.4.6 Melt and Crystallization Parameters (Using DSC) 691.4.5 Thermal Degradation (Using TGA) 771.4.5.1 Thermal Degradation of Polypropylene Homopolymer (PPHP) (Using TGA) 771.4.6 Optical Properties 791.4.6.1 Sample Preparations Techniques 811.4.6.2 Methods of Measurement 831.4.6.3 Transparency in Polypropylene 851.5 Electron Microscopy 861.5.1 Transmission Electron Microscopy (TEM) 881.5.2 Scanning Electron Microscopy (SEM) 881.5.2.1 Sample Preparation Techniques for TEM and SEM 891.6 Concluding Remarks 90References 902 Filled Polymer Composites 101S.F. Xavier2.1 Filled Polymer Composites 1012.1.1 Particulate/Flake Filled Polymer Composites 1012.1.1.1 Introduction 1012.1.2 Particulate/Flake Filled HDPE Composites 1022.1.2.1 History of HDPE 1022.1.2.2 HDPE Composites With Inorganic Fillers 1032.1.2.3 HDPE Composites with Organic Fillers 1172.1.2.4 Organic & Inorganic Filler Combinations 1172.1.2.5 HDPE Composites with Agro Fillers 1182.1.2.6 Filled Composites with HDPE Blends as Matrices 1242.1.3 Particulate/Flake Filled Polypropylene Composites 1252.1.3.1 History of Polypropylene (PP) 1252.1.3.2 PP Composites with Inorganic Fillers 1262.1.3.3 PP Composites with Organic Fillers 1302.1.3.4 PP Composites with Agro Fillers 1302.1.4 Fracture Propagation in Filled PP Composites 1462.1.4.1 Filled PP Composites Preparation 1462.1.4.2 Skin-Core Morphology/via Flake Orientation Measurements 1472.1.5 Fracture Toughness (K1c ) Measurements at -30, 25 and 80 °C 1512.1.5.1 Fracture Propagation in Filled PP at -30, 25 and 80 °C 1522.1.5.2 Specific Modulus Variation 1562.1.5.3 Fractography 1582.1.5.4 Coupling Agents and Interfacial Adhesion 1642.2 Table-1: Examples of Thermoplastic Matrices Filled with Different Organic/Inorganic Fillers 1672.3 Concluding Remarks 174References 1753 Short Fiber Reinforced Composites 185S.F. Xavier3.1 Basic Concepts 1853.1.1 Natural Fibers and Their Properties 1853.a HDPE 1883.2 Synthetic Short Fiber Reinforced HDPE Composites 1883.2.1 Short Glass Fiber Reinforced HDPE Composites 1883.3 Natural Short Fiber Reinforced HDPE Composites 1903.3.1 Natural Fibers and Their Properties 1903.3.1.A Fiber Attributes Affecting Polymer Composite Properties 1913.3.1.B Source and Morphology of the Cellulosic Fibers 1963.3.2 HDPE/Short Kenaf Bast Fiber 1973.3.3 HDPE/Short Hemp Fiber 2003.3.4 R-HDPE/Short Hemp Fiber 2033.3.5 HDPE/Short Flax Fiber 2063.3.6 LDPE/Short Sisal Fiber 2083.4 Inorganic Filler/Inorganic Fiber Reinforced HDPE Hybrid Composites 2103.4.1 Talc/Glass Fiber/HDPE Hybrid Composites 2103.5 Natural Fiber/Inorganic Filler Reinforced HDPE Hybrid Composites 2113.5.1 Rice Straw Fiber/CaCO 3 /Talc/HDPE Hybrid Composites 2123.6 Short Natural Fibers Reinforced HDPE Hybrid Composites 2143.6.1 Sisal/Hemp/HDPE Hybrid Composites 2143.6.2 Flax/Wood/HDPE Hybrid Composites 2153.6.3 Kenaf/Pine Apple Leaf Fiber (PALF)/HDPE Hybrid Composites 2163.b PP 2183.7 Synthetic Short Fiber Reinforced PP Composites 2183.7.1 Short Glass Fiber Reinforced PP Composites 2183.7.1.A Mechanical Properties’ Enhancement by Adhesion Improvement 2203.7.1.B Fine Morphology in PP Composites 2263.7.2 Short Carbon Fiber (CF) Reinforced PP Composites 2283.7.2.A Utilizing Waste Carbon Fiber from CF Plant 2303.7.2.B PP Composites with Waste CF (from Plant) 2313.8 Natural Short Fiber Reinforced PP Composites 2353.8.1 PP/Short Kenaf Bast Fiber 2393.8.2 PP/Short Hemp Fiber 2433.8.3 PP/Short Flax Fiber 2473.8.4 PP/Short Sisal Fiber 2553.9 Natural/Inorganic Short Fibers Reinforced PP Hybrid Composites 2613.9.1 Hemp/Glass/PP Hybrid Composites 2613.9.2 Vakka/Glass/PP Hybrid Composites 2623.10 Natural Fiber-Reinforced PP Hybrid Composites 2633.c PVC 2643.11 Natural Short Fiber Reinforced PVC Composites 2643.11.1 PVC/Short Wood Fiber 2663.11.2 PVC/Short Sisal Fiber 2683.11.3 PVC/Short Rice Straw Fiber 2713.d PLA 2733.12 Natural Short Fibers Reinforced Biopolymer (PLA) Composites 2733.12.1 History of PLA 2733.12.2 PLA/Kenaf Bast Fiber 2743.12.3 PLA/Short Hemp Fiber 2783.12.4 PLA/Short Flax Fiber 2843.12.5 PLA/Short Jute Fiber 2893.E Nylon 6 2923.13.1 History of Nylon- 6 2923.13.2 Nylon-6/Short Glass Fiber (GF) 2953.13.3 Nylon-6/Short Carbon Fiber (CF) 3023.13.4 Nylon-6/Short Kevlar (Aramid) Fiber 3083.13.5 Nylon-6/Short Natural Fiber (Pine Apple Leaf Fiber) 3123.13.6 Tribology of Nylon 6 Composites 3143.f PEEK 3163.14 Short Fiber Reinforced PEEK Composites 3163.14.1 History of PEEK 3163.14.2 PEEK/Short Carbon Fiber Composites 3193.14.2.a Structure-Property Relations 3193.14.2.b Interphase-Morphology 3213.14.2.c Tribology of PEEK Composites 3263.14.2.d Fatigue Behavior of PEEK Composites 3283.14.2.e Ratcheting Behavior 3303.14.2.f Bio-Medical Applications 3313.15 Concluding Remarks 335References 337Annexure- 1 367Market Trends for Wood Plastic Composites 3674 Long Fiber Reinforced Composites 369S.F. Xavier4 Long (Discontinous) Fiber Reinforced Composites 3694.1 Basic Concepts 3694.1.1 Long (Discontinuous) Fiber Reinforcement 3724.1.2 Strategies for Long (Discontinuous) Fiber Incorporation in Polymers 3744.A Polypropylene 3854.2 Synthetic Long (Discontinuous) Fiber Reinforced PP Composites 3854.2.1 Long Glass Fiber Reinforced PP Composites 3854.2.1.A Mechanical Properties’ Enhancement 3854.2.2 Long Carbon Fiber Reinforced PP Composites (LCFPP) 3924.2.2.A Electrically Conducting Composites 3944.2.2.B Recycled Long CF Composites 3974.3 Long (Discontinuous) Natural Fiber Reinforced PP Composites 4004.3.1 PP/Long Kenaf Bast Fiber 4004.3.2 PP/Long Hemp Fiber 4034.3.3 PP/Long Flax Fiber 4064.3.4 PP/Long (Discontinuous) Sisal Fiber 4104.B Nylon 6 4134.4 Synthetic Long (Discontinuous) Fiber Reinforced Nylon-6 Composites 4134.4.1 Nylon-6/Long Glass Fiber 4134.4.1.A Processing 4134.4.1.B Mechanical Properties Enhancement 4144.4.2 Nylon-6/Long Carbon Fiber 4164.4.2.A Fracture Toughness and Fractography 4224.4.2.B Tensile Properties at Elevated Temperatures 4244.4.2.C Salient Features of LCF/Nylon- 6 4244.4.2.D LFT-D-ECM Process 4264.c PBT 4284.5 Long (Discontinuous) Fiber Reinforced PBT Composites 4284.5.1 PBT/Long Carbon Fiber 4284.d PEEK 4364.6 Long Discontinuous Fiber Reinforced PEEK Composites 4364.6.1 PEEK/Long Carbon Fiber 4364.6.2 PEEK/Long Kevlar (Aramid) Fiber 4484.7 Concluding Remarks 459References 4605 Continous Fiber Reinforced Composites 479S.F. Xavier5.1 Basic Concepts 4805.1.1 Strategies for Continuous Fiber Incorporation in Polymers 4805.a PP 4815.2 Continuous Synthetic Fiber Reinforced PP Composites 4815.2.1 Continuous Glass Fiber Reinforced PP Composites 4815.2.1.1 Processing and Mechanical Properties Enhancement 4815.2.1.2 Direct Fiber Fed Injection Molding 4845.2.1.3 Tow-Pregs Preparation 4865.2.1.4 Continuous Glass Fiber Reinforced Thermoplastic Composite 4895.2.1.5 Glass Fiber Mat Reinforced PP Composites - Continuous Process 4895.2.1.6 Unidirectional Continuous Glass Fiber Tapes Reinforced PP Composites 4905.2.1.7 Preparation of Endless Fiber Tapes 4905.2.1.8 Press and Injection Hybrid Molding 4925.2.2 Continuous Carbon Fiber (CF) Reinforced PP Composites 4935.2.2.1 Composites with Micro-Braided-Yarn 4955.2.2.2 Interfacial Adhesion in PP Matrices 4965.2.2.3 CF Fabric Composites with Interleaved PP Films 4985.2.2.4 Wood-CF-Hybrid Composites 4995.2.2.5 CF Composites Hybridized with Self-Reinforced PP 5005.2.3 PP/Continuous Hemp Fiber 5025.2.3.A Hemp Fiber Surface Treatment 5035.2.3.B Thermal Degradation of Hemp Fiber 5055.2.3.C Hybrid Yarns Woven Reinforcements (Hemp/Polypropylene/Glass Yarns) 5055.2.4 PP/Continuous Flax Fiber 5055.2.5 PP/Continuous Sisal Fiber 5065.2.5.A Plasma Modification of Sisal Fibers 5085.B Nylon 6 5115.3 Continuous Fiber Reinforced Nylon-6 Composites 5115.3.1 Nylon-6/Continuous Glass Fiber (GF) 5115.3.1.1 In-Situ Pultrusion 5135.3.1.2 RIM Pultrusion Process 5135.3.1.3 Mechanical Properties Enhancement 5165.3.2 Glass Fiber Fabric Impregnation in Nylon 6 5165.3.2.1 Continuous Method 5165.3.3 Carbon Fiber Fabric Impregnation in Nylon 6 Melt (Discontinuous Method) 5175.3.4 Melt Impregnation of Continuous Carbon Fiber Reinforced Nylon 66 Composites 5205.3.5 Three-Dimensional Fabric Composites 5225.c PPS 5235.4 Continuous CF Reinforced PPS 5235.4.1 Ultra-Lightweight Carbon Fiber Reinforced PPS Composite Using ‘Spread Tow Technology’ 5235.d PEEK 5275.5 Continuous Fiber Reinforced PEEK Composites 5275.5.1 PEEK/Continuous Carbon Fiber (CF) 5275.6 Concluding Remarks 533References 5336 Nanocomposites 545S.F. Xavier6.1 Basics 5466.1.1 History of Nanoscience 5466.1.1.A The Growth of Nanotechnology 5476.1.1.B Nano Milestones 5496.1.1.C Some Significant Achievements in Nanotechnology 5516.1.2 Nanomaterials Used in Polymers 5526.1.2.A Nanoparticles/Fillers 5526.1.2.B Nanoflakes 5556.1.2.C Nanofibers 5616.2 Nanocomposites: General Principles 5666.2.1 Preparation of Nanocomposites by Different Routes 5666.2.2 Polymer-Clay Nanocomposites 5766.2.2.1 Methods to Achieve Intercalation/Exfoliation 5786.3 Nanocomposites with Different Polymers 5816.3.1 LDPE Nanocomposites with Different Nanoparticles 5816.3.1.A LDPE/Nano Al2 O3 5826.3.1.B LDPE/Nano MgO 5826.3.1.C LDPE/Nano TiO2 5856.3.1.D LDPE/Nano ZnO 5866.3.1.E LDPE/Treated Nano Cloisite 20A 5886.3.1.F LDPE/PE-g-MAH/Cv/OMMT 5886.3.1.G LDPE/LLDPE-g-MAH/Organo Clay 5906.3.1.H LDPE/LDPE-g-MAH/Nano Ag 5936.3.1.i PE/Polythiophene/Sol-Gel Nano Ag 5936.3.1.j LDPE Foams/Nano Silica 5956.3.2 HDPE Nanocomposites with Nanoparticles 5976.3.2.A HDPE/Nano Ag 5976.3.2.B HDPE/Nano Au 6006.3.2.C HDPE/Nano Bentonite 6056.3.2.D HDPE/Nano CaCO3 6076.3.2.E HDPE/Nano Cloisite 20A/Nano Cu 6096.3.2.F HDPE/Nano Copper Oxide 6106.3.2.G HDPE/Nano Fe3 O 4 6126.3.2.H HDPE/Nano PbS 6146.3.2.i HDPE/Nano Silica 6176.3.2.j HDPE/Nano TiO 2 /Nano CNC 6216.3.2.K HDPE/Nano ZnO 6236.3.2.L HDPE/Nano ZrP/Oct 6276.3.3 PP Nanocomposites with Nanoparticles 6286.3.3.A PP/Nano Ag 6286.3.3.B PP/Nano Ag/PEG 6306.3.3.C PP/Nano Ag/γ-Radiation/MMT 6346.3.3.D PP/Nano Al 2 O 3 6376.3.3.E PP/Nano γ-Al 2 O 3 -g-PS 6386.3.3.F PP/Nano BaCO 3 6416.3.3.G PP/Nano BaSO 4 6446.3.3.H PP/Nano CaCO 3 6456.3.3.i PP/Nano CaCO 3 /Nano SiO 2 6506.3.3.j PP/Nano Cu 6526.3.3.K PP/Nano Fe 2 O 3 6556.3.3.L PP/Nano TiO 2 6586.3.4 PVC Nanocomposites with Nanoparticles 6596.3.4.A PVC/Nano Clay 6606.3.4.B PVC/(Single Layer) Graphene 6656.3.4.C PVC/Multi-Layer Graphene (MLG) 6686.3.4.D PVC/Reduced Graphene Oxide (RGO) 6726.3.4.E PVC/TiO 2 (In Situ Suspension Polymerization) 6766.3.4.F PVC/Quantum Dots (CdSe/ZnS Nanoparticles) 6806.3.4.G PVC/Nano ZrO 2 6826.3.5 PLA Nanocomposites with Nanoparticles 6886.3.5.A PLA/Nano Ag 6886.3.5.B PLA/Nano Au 6926.3.5.C PLA/Nano Cu-Mt 6966.3.5.D PLA/Nano SiO 2 7006.3.5.E PLA/Nano-Precipitated CaCO 3 (npcc) 7056.3.5.F PLA/Nano-TiO 2 7076.3.5.G PLA/Nano-ZnO 7116.3.6 PA-6 Nanocomposites with Nanoparticles 7136.3.6.A PA-6/Nano-MMT 7136.3.6.B PA-6/Graphene and Graphene Oxide (GO) 7236.3.7 PEEK Nanocomposites with Nanoparticles 7256.3.7.A PEEK/Graphene for Laser Sintering 7256.3.7.B PEEK/Graphene/MWCNT for Conducting Filaments 7386.4 Concluding Remarks 745References 747Appendix- 1 786Nanostructures 7867 Applications 787S.F. Xavier7.1 Basic Concepts 7877.1.1 History and Growth of Thermoplastic Polymer Composite Applications 7877.2 Fiber Reinforced Polymer Composites 7907.2.1 Automotive Applications 7907.2.1.A Nanocomposites in Automotives 7957.2.2 Aerospace Applications 7997.2.3 Marine Applications 8017.2.4 Military Applications 8037.2.5 Sports Applications 8047.3 Construction Applications 8047.3.1 Repair & Rehabilitation 8057.3.2 Emergency Seismic Repair 8077.3.3 Repair & Rehabilitation of Wood Members 8087.4 Electrical Applications 8117.4.1 Graphene and Polymer Composites for Supercapacitor Applications 8117.4.2 Electromagnetic Interference Shielding 8127.4.3 Metal-Polymer Composites for AC Applications at High Frequencies 8177.4.4 Carbon Nanotube Polymer Composites for Electrical Applications 8247.5 Biomedical Applications 8297.5.1 Graphene-Based Polymer Composites 8297.5.2 Natural Fiber Polymer Composites 8327.5.3 Carbon Nanotube Polymer Composites 8447.6 Tribological Applications 8527.6.1 Polymer Tribology 8537.6.2 Influence of Load and Polymer Tg 8567.6.3 Influence of Reinforcement 8567.6.4 Influence of Lubricating Additive 8577.6.5 Influence of Temperature 8597.6.6 Biomimetics: An Application of Tribology 8647.7 Concluding Remarks 869References 8708 Recycling Polymer Comosites 887S.F. Xavier8.1 Environment vs Polymer Waste 8878.1.1 Polymer Pollution: A Serious Threat 8878.1.2 Recycling Waste Composite Materials 8938.1.3 Sustainable Recycling of Polymer Composites 8988.2 Recycling Filled/Fiber Reinforced Polymer Composites 8998.2.1 Recycled Polymer ‘Red Mud’ Composite 8998.2.2 Recycled HDPE Filled with ‘Waste Mud Solids’ 9028.2.3 Recycled Wood Polymer Composites 9078.2.4 Recycled Polymer Composites from Industrial Side-Stream Materials 9148.2.5 From Recycled Materials to ‘Green Composites’ 9188.3 Recyclability and Bio-Composites 9258.3.1 Bio-Composites of PLA 9258.3.1.1 Mechanical Recycling of PLA/Nano MMT Improves Properties 9318.3.1.2 Melt Reprocessed PLA/Hydrotalcite Nanocomposites 9338.3.2 Recyclability of PP/Bagasse Composites 9418.4 Applications of Recycled Polymer Composites 9468.4.1 Applications of Recycled Thermoplastic Composite Materials 9468.5 FRPs: Sustainability and Human Health Issues 9518.5.1 Fiber Reinforced Polymer Composites 9518.6 Concluding Remarks 960References 9619 Outlook on Future of Thermoplastic Polymer Composites 979S.F. Xavier9.1 Constituents of Thermoplastic Composites 9799.1.1 The Matrix 9799.1.2 Reinforcement 9819.1.3 Interphase 9829.2 The Future of Thermoplastic Composites 9829.2.1 Automotive Sector 9829.2.2 Aerospace and Defence Sectors 9869.2.3 Bio-Medical Applications 9899.2.4 Special Applications 9939.3 Final Concluding Remarks 997References 997