Del 1191 - Lecture Notes in Mathematics
Isomonodromic Deformation Method in the Theory of Painleve Equations
Häftad, Engelska, 1986
569 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Produktinformation
- Utgivningsdatum1986-05-01
- Mått155 x 235 x undefined mm
- SpråkEngelska
- SerieLecture Notes in Mathematics
- Antal sidor314
- FörlagSpringer-Verlag Berlin and Heidelberg GmbH & Co. KG
- EAN9783540164838
Tillhör följande kategorier
- Monodromy data for the systems of linear ordinary differential equations with rational coefficients.- Isomonodromic deformations of systems of linear ordinary differential equations with rational coefficients.- Isomonodromic deformations of systems (1.9) and (1.26) and painlevé equations of II and III types.- Inverse problem of the monodromy theory for the systems (1.9) and (1.26). Asymptotic analysis of integral equations of the inverse problem.- Asymptotic solution to a direct problem of the monodromy theory for the system (1.9).- Asymptotic solution to a direct problem of the monodromy theory for the system (1.26).- The manifold of solutions of painlevé II equation decreasing as ? ? ??. Parametrization of their asymptotics through the monodromy data. Ablowitz-segur connection formulae for real-valued solutions decreasing exponentially as ? ? + ?.- The manifold of solutions to painlevé III equation. The connection formulae for the asymptotics of real-valued solutions to the cauchy problem.- The manifold of solutions to painlevé II equation increasing as ? ? + ?. The expression of their asymptotics through the monodromy data. The connection formulae for pure imaginary solutions.- The movable poles of real-valued solutions to painlevé II equation and the eigenfunctions of anharmonic oscillator.- The movable poles of the solutions of painlevé III equation and their connection with mathifu functions.- Large-time asymptotics of the solution of the cauchy problem for MKdV equation.- The dynamics of electromagnetic impulse in a long laser amplifier.- The scaling limit in two-dimensional ising model.- Quasiclassical mode of the three-dimensional wave collapse.