Hoppa till sidans huvudinnehåll

Del 419

The Cauchy Problem for Non-Lipschitz Semi-Linear Parabolic Partial Differential Equations

Häftad, Engelska, 2015

AvJ. C. Meyer,D. J. Needham,J. C. (University of Birmingham) Meyer,D. J. (University of Birmingham) Needham

919 kr

Beställningsvara. Skickas inom 10-15 vardagar. Fri frakt för medlemmar vid köp för minst 249 kr.


Reaction-diffusion theory is a topic which has developed rapidly over the last thirty years, particularly with regards to applications in chemistry and life sciences. Of particular importance is the analysis of semi-linear parabolic PDEs. This monograph provides a general approach to the study of semi-linear parabolic equations when the nonlinearity, while failing to be Lipschitz continuous, is Hölder and/or upper Lipschitz continuous, a scenario that is not well studied, despite occurring often in models. The text presents new existence, uniqueness and continuous dependence results, leading to global and uniformly global well-posedness results (in the sense of Hadamard). Extensions of classical maximum/minimum principles, comparison theorems and derivative (Schauder-type) estimates are developed and employed. Detailed specific applications are presented in the later stages of the monograph. Requiring only a solid background in real analysis, this book is suitable for researchers in all areas of study involving semi-linear parabolic PDEs.

Produktinformation

  • Utgivningsdatum2015-10-22
  • Mått152 x 228 x 10 mm
  • Vikt260 g
  • FormatHäftad
  • SpråkEngelska
  • SerieDel 419 i London Mathematical Society Lecture Note Series
  • Antal sidor173
  • FörlagCambridge University Press
  • ISBN9781107477391