Tensor Categories for Vertex Operator Superalgebra Extensions

Häftad, Engelska, 2024

Av Thomas Creutzig, Shashank Kanade, Robert McRae

1 259 kr

Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Let V be a vertex operator algebra with a category C of (generalized) modules that has vertex tensor category structure, and thus braided tensor category structure, and let A be a vertex operator (super)algebra extension of V . We employ tensor categories to study untwisted (also called local) A-modules in C, using results of Huang-Kirillov-Lepowsky that show that A is a (super)algebra object in C and that generalized A-modules in C correspond exactly to local modules for the corresponding (super)algebra object. Both categories, of local modules for a C-algebra and (under suitable conditions) of generalized A-modules, have natural braided monoidal category structure, given in the first case by Pareigis and Kirillov-Ostrik and in the second case by Huang-Lepowsky-Zhang.Our main result is that the Huang-Kirillov-Lepowsky isomorphism of categories between local (super)algebra modules and extended vertex operator (super)algebra modules is also an isomorphism of braided monoidal (super)categories. Using this result, we show that induction from a suitable subcategory of V -modules to Amodules is a vertex tensor functor. Two applications are given: First, we derive Verlinde formulae for regular vertex operator superalgebras and regular 1 2Z-graded vertex operator algebras by realizing them as (super)algebra objects in the vertex tensor categories of their even and Z-graded components, respectively.

Produktinformation

  • Utgivningsdatum2024-05-31
  • Mått178 x 254 x undefined mm
  • Vikt272 g
  • FormatHäftad
  • SpråkEngelska
  • SerieMemoirs of the American Mathematical Society
  • Antal sidor187
  • FörlagAmerican Mathematical Society
  • ISBN9781470467241