Systematics
A Course of Lectures
Häftad, Engelska, 2012
Av Ward C. Wheeler, Ward C. (American Museum of Natural History) Wheeler, Ward C Wheeler
1 389 kr
Produktinformation
- Utgivningsdatum2012-05-04
- Mått191 x 246 x 23 mm
- Vikt993 g
- FormatHäftad
- SpråkEngelska
- Antal sidor448
- FörlagJohn Wiley and Sons Ltd
- ISBN9780470671696
Tillhör följande kategorier
Ward Wheeler is Professor in the Richard Gilder Graduate School and Curator of Invertebrate Zoology at the American Museum of Natural History. He is the author of several books, software packages, and over 100 technical papers in empirical and theoretical systematics.
- Preface xv Using these notes xvAcknowledgments xviList of algorithms xixI Fundamentals 11 History 21.1 Aristotle 21.2 Theophrastus 31.3 Pierre Belon 41.4 Carolus Linnaeus 41.5 Georges Louis Leclerc, Comte de Buffon 61.6 Jean-Baptiste Lamarck 71.7 Georges Cuvier 81.8 ´Etienne Geoffroy Saint-Hilaire 81.9 JohannWolfgang von Goethe 81.10 Lorenz Oken 91.11 Richard Owen 91.12 Charles Darwin 91.13 Stammb¨aume 121.14 Evolutionary Taxonomy 141.15 Phenetics 151.16 Phylogenetic Systematics 161.16.1 Hennig’s Three Questions 161.17 Molecules and Morphology 181.18 We are all Cladists 181.19 Exercises 192 Fundamental Concepts 202.1 Characters 202.1.1 Classes of Characters and Total Evidence 222.1.2 Ontogeny, Tokogeny, and Phylogeny 232.1.3 Characters and Character States 232.2 Taxa 262.3 Graphs, Trees, and Networks 282.3.1 Graphs and Trees 302.3.2 Enumeration 312.3.3 Networks 332.3.4 Mono-, Para-, and Polyphyly 332.3.5 Splits and Convexity 382.3.6 Apomorphy, Plesiomorphy, and Homoplasy 392.3.7 Gene Trees and Species Trees 412.4 Polarity and Rooting 432.4.1 Stratigraphy 432.4.2 Ontogeny 432.4.3 Outgroups 452.5 Optimality 492.6 Homology 492.7 Exercises 503 Species Concepts, Definitions, and Issues 533.1 Typological or Taxonomic Species Concept 543.2 Biological Species Concept 543.2.1 Criticisms of the BSC 553.3 Phylogenetic Species Concept(s) 563.3.1 Autapomorphic/Monophyletic Species Concept 563.3.2 Diagnostic/Phylogenetic Species Concept 583.4 Lineage Species Concepts 593.4.1 Hennigian Species 593.4.2 Evolutionary Species 603.4.3 Criticisms of Lineage-Based Species 613.5 Species as Individuals or Classes 623.6 Monoism and Pluralism 633.7 Pattern and Process 633.8 Species Nominalism 643.9 Do Species Concepts Matter? 653.10 Exercises 654 Hypothesis Testing and the Philosophy of Science 674.1 Forms of Scientific Reasoning 674.1.1 The Ancients 674.1.2 Ockham’s Razor 684.1.3 Modes of Scientific Inference 694.1.4 Induction 694.1.5 Deduction 694.1.6 Abduction 704.1.7 Hypothetico-Deduction 714.2 Other Philosophical Issues 754.2.1 Minimization, Transformation, and Weighting 754.3 Quotidian Importance 764.4 Exercises 765 Computational Concepts 775.1 Problems, Algorithms, and Complexity 775.1.1 Computer Science Basics 775.1.2 Algorithms 795.1.3 Asymptotic Notation 795.1.4 Complexity 805.1.5 Non-Deterministic Complexity 825.1.6 Complexity Classes: P and NP 825.2 An Example: The Traveling Salesman Problem 845.3 Heuristic Solutions 855.4 Metricity, and Untrametricity 865.5 NP–Complete Problems in Systematics 875.6 Exercises 886 Statistical and Mathematical Basics 896.1 Theory of Statistics 896.1.1 Probability 896.1.2 Conditional Probability 916.1.3 Distributions 926.1.4 Statistical Inference 986.1.5 Prior and Posterior Distributions 996.1.6 Bayes Estimators 1006.1.7 Maximum Likelihood Estimators 1016.1.8 Properties of Estimators 1016.2 Matrix Algebra, Differential Equations, and Markov Models 1026.2.1 Basics 1026.2.2 Gaussian Elimination 1026.2.3 Differential Equations 1046.2.4 Determining Eigenvalues 1056.2.5 MarkovMatrices 1066.3 Exercises 107II Homology 1097 Homology 1107.1 Pre-Evolutionary Concepts1107.1.1 Aristotle 1107.1.2 Pierre Belon 1107.1.3 ´Etienne Geoffroy Saint-Hilaire 1117.1.4 Richard Owen 1127.2 Charles Darwin 1137.3 E. Ray Lankester 1147.4 Adolf Remane 1147.5 Four Types of Homology 1157.5.1 Classical View 1157.5.2 Evolutionary Taxonomy 1157.5.3 Phenetic Homology 1167.5.4 Cladistic Homology 1167.5.5 Types of Homology 1177.6 Dynamic and Static Homology 1187.7 Exercises 1208 Sequence Alignment 1218.1 Background 1218.2 “Informal” Alignment 1218.3 Sequences 1218.3.1 Alphabets 1228.3.2 Transformations 1238.3.3 Distances 1238.4 Pairwise StringMatching 1238.4.1 An Example 1278.4.2 Reducing Complexity 1298.4.3 Other Indel Weights 1308.5 Multiple Sequence Alignment 1318.5.1 The Tree Alignment Problem 1338.5.2 Trees and Alignment 1338.5.3 Exact Solutions 1348.5.4 Polynomial Time Approximate Schemes 1348.5.5 Heuristic Multiple Sequence Alignment 1348.5.6 Implementations 1358.5.7 Structural Alignment 1398.6 Exercises 145III Optimality Criteria 1479 Optimality Criteria−Distance 1489.1 Why Distance? 1489.1.1 Benefits 1499.1.2 Drawbacks 1499.2 Distance Functions 1509.2.1 Metricity 1509.3 Ultrametric Trees 1509.4 Additive Trees 1529.4.1 Farris Transform 1539.4.2 Buneman Trees 1549.5 General Distances 1569.5.1 Phenetic Clustering 1579.5.2 Percent Standard Deviation 1609.5.3 Minimizing Length 1639.6 Comparisons 1709.7 Exercises 17110 Optimality Criteria−Parsimony 17310.1 Perfect Phylogeny 17410.2 Static Homology Characters 17410.2.1 Additive Characters 17510.2.2 Non-Additive Characters 17910.2.3 Matrix Characters 18210.3 Missing Data 18410.4 Edge Transformation Assignments 18710.5 Collapsing Branches 18810.6 Dynamic Homology 18810.7 Dynamic and Static Homology 18910.8 Sequences as Characters 19010.9 The Tree Alignment Problem on Trees 19110.9.1 Exact Solutions 19110.9.2 Heuristic Solutions 19110.9.3 Lifted Alignments, Fixed-States, and Search-Based Heuristics 19310.9.4 Iterative Improvement 19710.10 Performance of Heuristic Solutions 19810.11 Parameter Sensitivity 19810.11.1 Sensitivity Analysis 19910.12 Implied Alignment 19910.13 Rearrangement 20410.13.1 Sequence Characters with Moves 20410.13.2Gene Order Rearrangement 20510.13.3Median Evaluation 20710.13.4Combination ofMethods 20710.14 Horizontal Gene Transfer, Hybridization, and Phylogenetic Networks 20910.15 Exercises 21011 Optimality Criteria−Likelihood 21311.1 Motivation 21311.1.1 Felsenstein’s Example 21311.2 Maximum Likelihood and Trees 21611.2.1 Nuisance Parameters 21611.3 Types of Likelihood 21711.3.1 Flavors ofMaximum Relative Likelihood 21711.4 Static-Homology Characters 21811.4.1 Models 21811.4.2 Rate Variation 21911.4.3 Calculating p(D|T, θ) 22111.4.4 Links Between Likelihood and Parsimony 22211.4.5 A Note onMissing Data 22411.5 Dynamic-Homology Characters 22411.5.1 Sequence Characters 22511.5.2 CalculatingML Pairwise Alignment 22711.5.3 MLMultiple Alignment 23011.5.4 Maximum Likelihood Tree Alignment Problem 23011.5.5 Genomic Rearrangement 23211.5.6 Phylogenetic Networks 23411.6 Hypothesis Testing 23411.6.1 Likelihood Ratios 23411.6.2 Parameters and Fit 23611.7 Exercises 23812 Optimality Criteria−Posterior Probability 24012.1 Bayes in Systematics 24012.2 Priors 24112.2.1 Trees 24112.2.2 Nuisance Parameters 24212.3 Techniques 24612.3.1 Markov ChainMonte Carlo 24612.3.2 Metropolis–Hastings Algorithm 24612.3.3 Single Component 24812.3.4 Gibbs Sampler 24912.3.5 Bayesian MC3 24912.3.6 Summary of Posterior 25012.4 Topologies and Clades 25212.5 Optimality versus Support 25412.6 Dynamic Homology 25412.6.1 Hidden Markov Models 25512.6.2 An Example 25612.6.3 Three Questions—Three Algorithms 25812.6.4 HMMAlignment 26212.6.5 Bayesian Tree Alignment 26412.6.6 Implementations 26412.7 Rearrangement 26612.8 Criticisms of BayesianMethods 26712.9 Exercises 26713 Comparison of Optimality Criteria 26913.1 Distance and CharacterMethods 26913.2 Epistemology 27013.2.1 Ockham’s Razor and Popperian Argumentation 27113.2.2 Parsimony and the Evolutionary Process 27213.2.3 Induction and Statistical Estimation 27213.2.4 Hypothesis Testing and Optimality Criteria 27213.3 Statistical Behavior 27313.3.1 Probability 27313.3.2 Consistency 27413.3.3 Efficiency 28113.3.4 Robustness 28213.4 Performance 28213.4.1 Long-Branch Attraction 28313.4.2 Congruence 28513.5 Convergence 28513.6 CanWe Argue Optimality Criteria? 28613.7 Exercises 287IV Trees 28914 Tree Searching 29014.1 Exact Solutions 29014.1.1 Explicit Enumeration 29014.1.2 Implicit Enumeration—Branch-and-Bound 29214.2 Heuristic Solutions 29414.2.1 Local versus Global Optima 29414.3 Trajectory Search 29614.3.1 Wagner Algorithm 29614.3.2 Branch-Swapping Refinement 29814.3.3 Swapping as Distance 30114.3.4 Depth-First versus Breadth-First Searching 30214.4 Randomization 30414.5 Perturbation 30514.6 Sectorial Searches and Disc-Covering Methods 30914.6.1 Sectorial Searches 30914.6.2 Disc-CoveringMethods 31014.7 Simulated Annealing 31214.8 Genetic Algorithm 31614.9 Synthesis and Stopping 31814.10 Empirical Examples 31914.11 Exercises 32315 Support 32415.1 ResamplingMeasures 32415.1.1 Bootstrap 32515.1.2 Criticisms of the Bootstrap 32615.1.3 Jackknife 32815.1.4 Resampling and Dynamic Homology Characters 32915.2 Optimality-BasedMeasures 32915.2.1 Parsimony 33015.2.2 Likelihood 33215.2.3 Bayesian Posterior Probability 33415.2.4 Strengths of Optimality-Based Support 33515.3 Parameter-BasedMeasures 33615.4 Comparison of Support Measures—Optimal and Average 33615.5 Which to Choose? 33915.6 Exercises 33916 Consensus, Congruence, and Supertrees 34116.1 Consensus TreeMethods 34116.1.1 Motivations 34116.1.2 Adams I and II 34116.1.3 Gareth Nelson 34416.1.4 Majority Rule 34716.1.5 Strict 34716.1.6 Semi-Strict/Combinable Components 34816.1.7 Minimally Pruned 34816.1.8 When to UseWhat? 35016.2 Supertrees 35016.2.1 Overview 35016.2.2 The Impossibility of the Reasonable 35016.2.3 Graph-BasedMethods 35316.2.4 Strict Consensus Supertree 35516.2.5 MR-Based 35516.2.6 Distance-Based Method 35816.2.7 Supertrees or Supermatrices? 36016.3 Exercises 361V Applications 36317 Clocks and Rates 36417.1 The Molecular Clock 36417.2 Dating 36517.3 Testing Clocks 36517.3.1 Langley–Fitch 36517.3.2 Farris 36617.3.3 Felsenstein 36717.4 Relaxed ClockModels 36817.4.1 Local Clocks 36817.4.2 Rate Smoothing 36817.4.3 Bayesian Clock 36917.5 Implementations 36917.5.1 r8s 36917.5.2 MULTIDIVTIME 37017.5.3 BEAST 37017.6 Criticisms 37017.7 Molecular Dates? 37317.8 Exercises 373A Mathematical Notation 374Bibliography 376Index 415Color plate section between pp. 76 and 77
“Viewed as a series of lectures, this is clearly aimed at graduate level courses in systematics, although some elements would prove useful at undergraduate level.” (British Ecological Society Bulletin, 1 August 2013)“If you want to teach yourself systematics, this book is for you. It’s just a series of lectures and exercises compiled by Wheeler, one of the top systematic biologists.” (Teaching Biology, 20 December 2012)“All things considered, I strongly recommend this work as a textbook for those teaching in systematics, biologists and palaeontologists alike . . . I would advise this book to graduate students – MSc and above.” (Journal of Zoological Systematics and Evolutionary Research, 1 February 2013)