Symplectic Geometry of Integrable Hamiltonian Systems
Häftad, Engelska, 2003
Av Michèle Audin, Ana Cannas da Silva, Eugene Lerman, Ana Cannas Da Silva, M. Audin, A. Cannas de Silva
579 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact that the system is invariant under a (semi-global) torus action. It is thus natural to investigate the symplectic manifolds that can be endowed with a (global) torus action. This leads to symplectic toric manifolds (Part B of this book). Physics makes a surprising come-back in Part A: to describe Mirror Symmetry, one looks for a special kind of Lagrangian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (Part C of this book).
Produktinformation
- Utgivningsdatum2003-04-24
- Mått170 x 244 x 14 mm
- Vikt422 g
- FormatHäftad
- SpråkEngelska
- SerieAdvanced Courses in Mathematics - CRM Barcelona
- Antal sidor226
- Upplaga2003
- FörlagBirkhauser Verlag AG
- ISBN9783764321673