Surface Plasmon Enhanced, Coupled and Controlled Fluorescence
Inbunden, Engelska, 2017
2 859 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Explains the principles and current thinking behind plasmon enhanced Fluorescence Describes the current developments in Surface Plasmon Enhanced, Coupled and Controlled FluorescenceDetails methods used to understand solar energy conversion, detect and quantify DNA more quickly and accurately, and enhance the timeliness and accuracy of digital immunoassaysContains contributions by the world’s leading scientists in the area of fluorescence and plasmonicsDescribes detailed experimental procedures for developing both surfaces and nanoparticles for applications in metal-enhanced fluorescence
Produktinformation
- Utgivningsdatum2017-05-05
- Mått216 x 282 x 25 mm
- Vikt1 043 g
- FormatInbunden
- SpråkEngelska
- Antal sidor344
- FörlagJohn Wiley & Sons Inc
- ISBN9781118027936
Tillhör följande kategorier
Chris D. Geddes, PhD, FRSC, is a professor at the University of Maryland, Baltimore County, USA, where he is the director of the Institute of Fluorescence, and the editor-in-chief of both the Journal of Fluorescence and the Plasmonics journal. With more than 250 papers, 35 books, and >100 patents to his credit, he has extensive expertise in fluorescence spectroscopy, particularly in fluorescence sensing and metal–fluorophore interactions.
- List of Contributors xiPreface xv1 Plasmonic–Fluorescent and Magnetic–Fluorescent Composite Nanoparticle as Multifunctional Cellular Probe 1Arindam Saha, SK Basiruddin, and Nikhil Ranjan Jana1.1 Introduction 11.2 Synthesis Design of Composite Nanoparticle 21.2.1 Method 1: Polyacrylate Coating–Based Composite of Nanoparticle and Organic Dye 31.2.2 Method 2: Polyacrylate Coating–Based Composite of Two Different Nanoparticles 31.2.3 Method 3: Ligand Exchange Approach–Based Composite of Two Different Nanoparticles 41.3 Property of Composite Nanoparticles 51.3.1 Optical Property 51.3.2 Fluorophore Lifetime Study 71.4 Functionalization and Labeling Application of Composite Nanoparticle 81.5 Conclusion 82 Compatibility of Metal–Induced Fluorescence Enhancement with Applications in Analytical Chemistry and Biosensing 13Fang Xie, Wei Deng, and Ewa M. Goldys2.1 Introduction 132.2 Homogeneous Protein Sensing MIFE Substrates 142.2.1 Core–Shell Approach 142.2.2 Homogeneous Large Au Nanoparticle Substrates 162.2.3 Commercial Klarite™ Substrate 182.3 Ag Fractal Structures 192.3.1 Reasons for High Enhancement Factors in Nanowire Structures 192.3.2 Ag Dendritic Structure—Homogeneous Silver Fractal 222.4 MIFE with Membranes for Protein Dot Blots 252.5 MIFE with Flow Cytometry Beads and Single Particle Imaging 303 Plasmonic Enhancement of Molecule–Doped Core–Shell and Nanoshell on Molecular Fluorescence 37Jiunn–Woei Liaw, Chuan–Li Liu, Chong–Yu Jiang, and Mao–Kuen Kuo3.1 Introduction 373.2 Theory 383.2.1 Plane Wave Interacting with an Multilayered Sphere 393.2.2 Excited Dipole Interacting with a Multilayered Sphere 403.2.3 EF on Fluorescence 403.3 Numerical Results and Discussion 413.3.1 Core–Shell 413.3.2 Nanoshelled Nanocavity 503.3.3 NS@SiO2 533.4 Conclusion 664 Controlling Metal–Enhanced Fluorescence Using Bimetallic Nanoparticles 73Debosruti Dutta, Sanchari Chowdhury, Chi Ta Yang, Venkat R. Bhethanabotla, and Babu Joseph4.1 Introduction 734.2 Experimental Methods 744.2.1 Synthesis 744.2.2 Particle Characterization 754.2.3 Fluorescence Spectroscopy 764.3 Theoretical Modeling 794.3.1 Modeling SPR Using Mie Theory 794.3.2 Modeling of Metal–Enhanced Fluorescence Modified Gersten–Nitzan Model 814.3.3 Modeling MEF Using Finite–Difference Time–Domain (FDTD) Calculations 854.4 Conclusion and Future Directions 875 Roles of Surface Plasmon Polaritons in Fluorescence Enhancement 91K. F. Chan, K. C. Hui, J. Li, C. H. Fok, and H. C. Ong5.1 Introduction 915.1.1 Surface Plasmon–Mediated Emission 915.1.2 Excitation of Propagating and Localized Surface Plasmon Polaritons in Periodic Metallic Arrays 935.1.3 Surface Plasmon–Mediated Emission from Periodic Arrays 955.2 Experimental 955.2.1 Sample Preparation 955.2.2 Optical Characterizations 965.3 Result and Discussion 975.3.1 The Decay Lifetimes of Metallic Hole Arrays 975.3.2 Dependence of Decay Lifetime on Hole Size 985.3.3 Comparison between Dispersion Relation and PL Mapping 1005.3.4 Comparison of the Coupling Rate ΓB of Different SPP Modes 1025.3.5 Photoluminescence Dependence on Hole Size 1045.3.6 Dependence of Fluorescence Decay Lifetime on Hole Size 1055.4 Conclusions 1076 Fluorescence Excitation, Decay, and Energy Transfer in the Vicinity of Thin Dielectric/Metal/Dielectric Layers near Their Surface Plasmon Polariton Cutoff Frequency 111Kareem Elsayad and Katrin G. Heinze6.1 Introduction 1116.2 Background 1116.3 Theory 1126.4 Summary 1207 Metal–Enhanced Fluorescence in Biosensing Applications 121Ruoyun Lin, Chenxi Li, Yang Chen, Feng Liu, and Na Li7.1 Introduction 1217.2 Substrates 1217.3 Distance Control 1287.4 Summary and Outlook 1328 Long–Range Metal–Enhanced Fluorescence 137Ofer Kedem8.1 Introduction 1378.2 Collective Effects in NP Films 1388.3 Investigations of Metal–Fluorophore Interactions at Long Separations 1388.3.1 Distance–Dependent Fluorescence of Tris(bipyridine)ruthenium(II) on Supported Plasmonic Gold NP Ensembles 1388.3.2 Lifetime 1398.3.3 Intensity 1418.3.4 Emission Wavelength and Linewidth 1438.4 Conclusions 1469 Evolution, Stabilization, and Tuning of Metal–Enhanced Fluorescence in Aqueous Solution 151Jayasmita Jana, Mainak Ganguly, and Tarasankar Pal9.1 Introduction 1519.1.1 Coinage Metal Nanoparticles in Metal–Enhanced Fluorescence 1539.2 Metal–Enhanced Fluorescence in Solution Phase 1549.2.1 Metal–Enhanced Fluorescence from Metal(0) in Solution 1549.3 Applications of Metal–Enhanced Fluorescence 1699.3.1 Sensing of Biomolecules 1699.3.2 Sensing of Toxic Metals 1719.4 Conclusion 17410 Distance and Location–Dependent Surface Plasmon Resonance–Enhanced Photoluminescence in Tailored Nanostructures 179Saji Thomas Kochuveedu and Dong Ha Kim10.1 Introduction 17910.2 Effect of SPR in PL 18110.2.1 Photoluminescence 18110.2.2 Enhancement of Emission by SPR 18210.2.3 Quenching of Emission by SPR 18410.3 Effect of SPR in FRET 18510.3.1 FRET 18510.3.2 SPR–Induced Enhanced FRET 18810.3.3 Effect of the Position, Concentration, and Size of Plasmonic Nanostructures in FRET System 18910.4 Conclusions and Outlook 19111 Fluorescence Quenching by Plasmonic Silver Nanoparticles 197M. Umadevi11.1 Metal Nanoparticles 19711.2 Fluorescence Quenching 19711.3 Mechanism behind Quenching 19812 AgOx Thin Film for Surface–Enhanced Raman Spectroscopy 203Ming Lun Tseng, Cheng Hung Chu, Jie Chen, Kuang Sheng Chung, and Din Ping Tsai12.1 Introduction 20312.1.1 SERS on the Laser–Treated AgOx Thin Film 20312.1.2 Annealed AgOx Thin Film for SERS 20612.2 Conclusion 20613 Plasmon–Enhanced Two–Photon Excitation Fluorescence and Biomedical Applications 211Taishi Zhang, Tingting Zhao, Peiyan Yuan, and Qing–Hua Xu13.1 Introduction 21113.2 Metal–Chromophore Interactions 21213.3 Plasmon–Enhanced One–Photon Excitation Fluorescence 21413.4 Plasmon–Enhanced Two–Photon Excitation Fluorescence 21513.5 Conclusions and Outlook 22014 Fluorescence Biosensors Utilizing Grating–Assisted Plasmonic Amplification 227Koji Toma, Mana Toma, Martin Bauch, Simone Hageneder, and Jakub Dostalek14.1 Introduction 22714.2 SPCE in Vicinity to Metallic Surface 22714.3 SPCE Utilizing SP Waves with Small Losses 23014.4 Nondiffractive Grating Structures for Angular Control of SPCE 23214.5 Diffractive Grating Structures for Angular Control of SPCE 23414.6 Implementation of Grating–Assisted SPCE to Biosensors 23614.7 Summary 23715 Surface Plasmon–Coupled Emission: Emerging Paradigms and Challenges for Bioapplication 241Shuo–Hui Cao, Yan–Yun Zhai, Kai–Xin Xie, and Yao–Qun Li15.1 Introduction 24115.2 Properties of SPCE 24215.3 Current Developments of SPCE in Bioanalysis 24315.3.1 New Substrates Designing for Biochip 24315.3.2 Optical Switch for Biosensing 24415.3.3 Full–Coupling Effect for Bioapplication 24515.3.4 Hot–Spot Nanostructure–Based Biosensor 24815.3.5 Imaging Apparatus for High–Throughput Detection 24915.3.6 Waveguide Mode SPCE to Widen Detection Region 25115.4 Perspectives 25216 Plasmon–Enhanced Luminescence with Shell–Isolated Nanoparticles 257Sabrina A. Camacho, Pedro H. B. Aoki, Osvaldo N. Oliveira, Jr, Carlos J. L. Constantino, and Ricardo F. Aroca16.1 Introduction 25716.2 Synthesis of Shell–Isolated Nanoparticles 25916.2.1 Nanosphere Au–SHINs 25916.2.2 Nanorod Au–SHINs 26016.3 Plasmon–Enhanced Luminescence in Liquid Media 26216.4 Enhanced Luminescence on Solid Surfaces and Spectral Profile Modification 26516.4.1 SHINEF on Langmuir–Blodgett Films 26617 Controlled and Enhanced Fluorescence Using Plasmonic Nanocavities 271Gleb M. Akselrod, David R. Smith, and Maiken H. Mikkelsen17.1 Introduction to Plasmonic Nanocavities 27117.2 Summary of Fabrication 27217.3 Properties of the Nanocavity 27317.3.1 Nanocavity Resonances 27317.3.2 Tuning the Resonance 27417.3.3 Directional Scattering and Emission 27617.4 Theory of Emitters Coupled to Nanocavity 27717.4.1 Simulation of Nanocavity 27817.4.2 Enhancement in the Spontaneous Emission Rate 27817.5 Absorption Enhancement 28017.6 Purcell Enhancement 28217.7 Ultrafast Spontaneous Emission 28617.8 Harnessing Multiple Resonances for Fluorescence Enhancement 28817.9 Conclusions and Outlook 29118 Plasmonic Enhancement of UV Fluorescence 295Xiaojin Jiao, Yunshan Wang, and Steve Blair18.1 Introduction 29518.2 Plasmonic Enhancement 29518.3 Analytical Description of PE of Fluorescence 29618.4 Overview of Research on Plasmon–Enhanced UV Fluorescence 29718.4.1 Material Selection 29718.4.2 Structure Choice 30118.4.3 Experimental Measurement 30318.5 Summary 306Index 309