Supported Metal Single Atom Catalysis
Inbunden, Engelska, 2022
2 709 kr
Produktinformation
- Utgivningsdatum2022-03-23
- Mått170 x 244 x 37 mm
- Vikt1 418 g
- FormatInbunden
- SpråkEngelska
- Antal sidor688
- FörlagWiley-VCH Verlag GmbH
- ISBN9783527348442
Tillhör följande kategorier
Philippe Serp is Professor of Inorganic Chemistry, Toulouse University, France. His research is focused on nanocatalysis and molecular approaches to understand heterogeneous catalysis. He is a recipient of the Catalysis Division Award and Industrial Chemistry Division Award of the French Chemical Society. He has authored more than 200 publications, 3 books, and 19 patents. Doan Pham Minh is Associate Professor, IMT Mines Albi, France. Since 2020, he is Deputy Director of the RAPSODEE Research Center. He investigates the valorization of biomass, bio-wastes, and industrial co-products into energy carriers and useful materials, as well as refractory ceramics and functional materials applied in thermo-conversion processes, catalytic processes, and thermal energy storage. He has published 90 articles, 9 book chapters, and 3 patents.
- Foreword xvPreface xxi1 Introduction to Supported Metal Single Atom Catalysis 1Doan Pham Minh and Philippe Serp1.1 Introduction 11.2 Definition 41.3 Origins of Supported Metal Single Atom Catalysts 71.4 Challenges, Limitations, and Possible Opportunities in Supported Metal Single Atom Catalysis 141.4.1 Metal Loading in Supported Metal Single Atom Catalysts 141.4.2 Metallic Species Homogeneity in Supported Metal Single Atom Catalysts 171.4.2.1 Are Clusters or Nanoparticles Present in Supported Metal Single Atom Catalysts? 171.4.2.2 Control of the Local Environment of Single Atoms in Supported Metal Single Atom Catalysts 181.4.3 Metal Single Atom Stability and Dynamic in Supported Metal Single Atom Catalysts 211.4.3.1 Thermal and Chemical Stability 211.4.3.2 Supported Single Atom Dynamics in Chemical Reactions 261.4.4 Obtaining Reliable Information About the Active Sites of Metal SACs 30Acknowledgments 31References 312 Preparation of Supported Metal Single-Atom Catalysts on Metal Oxides and Hydroxides 51Canio Scarfiello, Jeremy Audevard, Carole Le Berre, Katerina Soulantica, Philippe Serp, and Doan Pham Minh2.1 Introduction 512.2 Gas-Phase Deposition Methods 522.2.1 Mass-Selected Soft-Landing Method 522.2.2 Atomic Layer Deposition (ALD) Method 532.3 Wet Chemistry Methods 582.3.1 Impregnation Methods 582.3.1.1 Wet Impregnation 582.3.1.2 Incipient Wetness Impregnation (IWI) 662.3.1.3 Strong Electrostatic Adsorption (SEA) 702.3.2 Co-precipitation Method 742.3.3 Deposition–Precipitation Method (DP) 772.3.4 SAC Synthesis via Ion Exchange 802.3.5 Sol–Gel Solvent Vaporization Self-Assembly Method 822.4 Photochemical Methods 832.5 Electro-chemical Methods 852.6 Top-Down Methods 872.7 Other Methods 902.8 Conclusions 92Acknowledgments 93References 933 Preparation of Supported Metal Single-Atom Catalysts on Carbon Supports 101Camila Rivera-Cárcamo and Philippe Serp3.1 Introduction 1013.2 Atomic Layer Deposition (ALD) 1023.3 Solution-Phase Syntheses 1053.3.1 Impregnation 1053.3.2 Low-Temperature Techniques 1093.4 Sputtering 1113.5 Top-Down Methods 1143.6 Pyrolysis Methods 1173.6.1 MOF-Derived SACs 1183.6.2 Template Sacrificial Approach 1213.6.3 Other Sources 1243.7 Polymerization 1273.8 Other Methods 1303.9 Conclusion 133Acknowledgments 135References 1354 Single-Metal Alloys 145Jianyu Han, Junju Mu, and Feng Wang4.1 Introduction 1454.2 Diluted Single-Atom Alloy Catalysts 1464.2.1 Synthesis of Diluted Single-Atom Alloy Catalysts 1464.2.2 Characterizations of Diluted Single-Atom Alloy Catalysts 1484.2.3 Catalytic Performances of Diluted Single-Atom Alloy Catalysts 1494.3 Single-Atom Doping Alloy Catalysts 1504.3.1 Synthesis of Single-Atom Doping Alloy Catalysts 1504.3.2 Characterizations of Single-Atom Doping Catalysts 1524.3.3 Catalytic Applications of Single-Atom Doping Alloys 1534.4 Diatomic Alloy Catalysts 1534.4.1 Synthesis of Diatomic Alloy Catalysts 1534.4.2 Characterizations of Diatomic Alloy Catalysts 1554.4.3 Catalytic Applications of Diatomic Alloys 1564.5 Machine Learning-Guided Single-Atom Alloy Catalyst Design 1574.6 Perspectives 159References 1615 Characterization of Supported Metal Single-Atom Catalysts 169Lei Zhang, Kieran Doyle-Davis, and Xueliang Sun5.1 Introduction 1695.2 Morphology Characterization 1705.2.1 Transmission Electron Microscopy (TEM) 1705.2.1.1 Introduction of TEM 1705.2.1.2 TEM Characterization Technique 1715.2.1.3 Characterization of Typical SACs 1715.2.2 Scanning Tunneling Microscopy (STM) 1755.2.2.1 Introduction of STM 1755.2.2.2 STM Characterization of SACs 1765.3 Structure Characterization 1775.3.1 Synchrotron Radiation X-ray 1775.3.1.1 Fundamentals of Synchrotron Radiation X-ray 1775.3.1.2 XANES 1775.3.1.3 EXAFS 1795.3.1.4 In situ XAS Study on Structural Evolution During Catalytic Reaction 1825.3.2 Infrared (IR) Spectroscopy 1835.3.3 Mössbauer Spectroscopy 1865.3.4 X-ray Photoelectron Spectroscopy (XPS) 1875.3.5 Solid-State Nuclear Magnetic Resonance 1895.3.6 Electron Paramagnetic Resonance (EPR) 1905.3.7 Photoluminescence 1905.4 Loading Amount Characterization 1915.4.1 Inductively Coupled Plasma Atomic Emission Spectrometry 1915.4.2 Thermogravimetric Analysis 1925.5 Summaries and Outlook 192References 1936 In situ/Operando Techniques for Characterization of Supported Metal Single-Atom Catalysts 199Alberto Casu, Samy Ould-Chikh, Gavin Mountjoy, Anna Corrias, and Andrea Falqui6.1 Introduction 1996.2 In situ/Operando XAS 2006.2.1 Method 2006.2.2 X-ray Absorption Near-Edge Structure (XANES) 2016.2.3 Extended X-ray Absorption Fine Structure (EXAFS) 2026.2.4 In situ/Operando XAS of SACs Consisting of Transition Metals in Period 3 2036.2.5 In situ/Operando XAS of SACs Consisting of Precious Metals in Period 4 2056.2.6 In situ/Operando XAS of SACs Consisting of Platinum on Oxide Supports 2066.2.7 In situ/Operando XAS of SACs Consisting of Platinum on Non-oxide Supports 2086.2.8 In situ/Operando XAS of SACs Consisting of Precious Metals in Period 5 Other than Platinum 2096.2.9 In situ/Operando XAS of Other Atoms in SACs and Further Studies 2106.3 Other In situ/Operando Spectroscopies: IR, UV–vis and Mössbauer Spectroscopies, and XPS 2106.3.1 Methods 2106.3.2 In situ/Operando IR Spectroscopy of SACs Consisting of Platinum 2126.3.3 In situ/Operando IR Spectroscopy of SACs Consisting of Metal Atoms Other than Platinum 2156.3.4 In situ/Operando UV–vis and Mössbauer Spectroscopy, and XPS of SACs 2166.4 In situ/Operando Electron Microscopy 2186.4.1 State of the Art 2186.4.2 In situ Imaging During the Synthesis of SACs 2216.4.3 In situ Observation of Catalysis Reactions at Single Atoms in Motion 2266.5 Summary and Conclusions 232References 2347 Contribution of Theoretical Calculations to Supported Metal Single-Atom Catalysis 241Javier Navarro-Ruiz, Romuald Poteau, Iann C. Gerber, and Iker del Rosal7.1 Introduction 2417.2 Carbon-Based Support Models 2427.2.1 Anchoring Sites on Carbon Materials 2437.2.1.1 SAs-Fullerene 2437.2.1.2 SAs-CNT 2447.2.1.3 SAs-Graphene 2457.2.2 Physicochemical Properties of the SAs upon Anchorage 2487.2.2.1 Platinum 2497.2.2.2 Palladium 2507.2.2.3 Other TMs 2517.3 Hydrogen Spillover 2527.3.1 Hydrogen Adsorption and Dissociation on the Metal Catalyst 2537.3.2 Hydrogen Migration from the Metal Catalyst to the Support 2567.3.3 Hydrogen Diffusion on the Support 2587.4 Mechanistic Studies on C-SACs 2607.4.1 Thermocatalysis 2617.4.1.1 C–H Activation 2617.4.1.2 Hydrogenation 2637.4.1.3 CO2 Hydrogenation 2637.4.1.4 CO Oxidation 2647.4.1.5 Other Reactions 2667.4.2 Electrocatalysis 2667.4.2.1 Water Splitting 2667.4.2.2 Oxygen Reduction Reaction 2697.4.2.3 Carbon Dioxide Reduction Reaction 2717.4.2.4 Other Reactions 2737.5 Oxide Support Models 2737.5.1 Aluminum Oxide 2747.5.2 Cobalt Oxides 2797.5.3 Cerium Oxide 2817.5.4 Magnesium Oxides 2907.5.5 Titanium Dioxide 2947.5.6 Zirconium Oxide 3027.5.7 Zinc Oxide 3067.6 Conclusions 307Acknowledgements 307References 3078 Supported Metal Single Atom Thermocatalysts for Selective Hydrogenation 339Eva Castillejos, Ana B. Dongil, Inmaculada Rodríguez-Ramos, and Antonio Guerrero-Ruiz8.1 Introduction 3398.2 Hydrogenation Reactions Catalyzed by Single-Atom Supported on Carbon Materials 3428.2.1 Noble-Metal Single-Atom Catalysts 3448.2.2 Non-Noble Metal Single-Atom Catalysts 3488.3 Hydrogenation Reactions Catalyzed by SACs Supported on Unreducible Metal Oxides 3528.4 Hydrogenation Reactions Catalyzed by SACs Supported on Reducible Metal Oxide CeO2 and TiO2 3608.5 Hydrogenation Reactions Catalyzed by SACs Supported on Metallic Surfaces 3678.6 Summary and Conclusions 369Acknowledgments 370References 3719 Supported Metal Single-Atom Thermocatalysts for Oxidation Reactions 377Laurent Piccolo, Stéphane Loridant, and Phillip Christopher9.1 Introduction 3779.2 Oxide-Supported Single-Atom Catalysts 3789.2.1 CO Oxidation 3799.2.1.1 PGM on Alumina 3799.2.1.2 PGM on Iron Oxide 3829.2.1.3 Noble Metals on Titania 3839.2.1.4 Late Transition Metals on Ceria 3869.2.1.5 Other Catalysts 3909.2.1.6 Discussion 3919.2.2 Preferential CO Oxidation in Hydrogen (PROX) 3939.2.3 Water–Gas Shift Reaction (WGSR) 3949.2.4 Total Oxidation of Hydrocarbons 3979.2.5 Selective Oxidation Reactions 3989.2.5.1 Early Transition Metals on Oxides 3989.2.5.2 Late Transition Metals on Oxides 3999.3 Single-Atom Catalysts Supported on Carbon and Other Materials 4019.3.1 Carbon and Nitrogen-Hosted SAC 4019.3.1.1 Selective Oxidation of Alcohols 4029.3.1.2 Selective Oxidation of Hydrocarbons 4029.3.1.3 Other Reactions 4039.3.2 Single-Atom Alloy Catalysts 4049.4 Summary and Conclusions 404References 40610 Supported Metal Single-Atom Thermocatalysts for the Activation of Small Molecules 425Marcos G. Farpón, Wilson Henao, and Gonzalo Prieto10.1 Introduction 42510.2 Methane Conversion on Single-Atom Catalysts 42610.2.1 Methane Activation: Mechanistic Considerations 42810.2.2 Methane Conversion on Single-Atom Catalysts: State of the Art and Challenges Ahead 43110.2.2.1 Oxidative Routes 43110.2.2.2 Non-oxidative Routes 43510.3 CO2 Conversion on Single-Atom Catalysts 43910.3.1 CO2 Activation: Mechanistic Considerations 44010.3.2 CO2 Hydrogenation on Single-Atom Catalysts: State of the Art, Advantages, and Limitations 44210.4 CO Conversion on Single-Atom Catalysts 44610.4.1 CO Activation: Fundamental Considerations 44710.4.2 Water–Gas-Shift Reaction 44910.4.3 CO Oxidation 45110.4.4 Other CO Conversion Catalysis with SACs 45510.5 Activation and Selective Conversion of Other Small Molecules with SACs 45610.6 Concluding Remarks 459Acronym 460References 46111 Supported Metal Single Atom Thermocatalysts for C—C, C—Si, and C—B Bond–Forming (Coupling) Reactions and Biomedical Applications 473Rossella Greco, Marta Mon, and Antonio Leyva–Pérez11.1 Introduction 47311.1.1 Chronology of Single-Atom Catalysts 47311.1.2 Use of SACs in Reactions of Interest for Organic Synthesis and Biomedical Applications 47611.2 Carbon–Carbon Cross-Coupling Reactions 47811.3 Hydrosilylation and Hydroboration Reactions 48711.3.1 Hydrosilylation Reactions 48711.3.2 Hydroboration Reactions 49011.4 Biomedical Applications 49211.5 Summary and Conclusions 495References 49612 Supported Metal Single-Atom Thermo-Catalysts for Reforming Reactions 503Xuan-Huynh Pham and Doan Pham Minh12.1 Introduction 50312.2 Supported Metal Single Atoms for Methane Reforming 50512.2.1 Noble-Metal Single-Atom Catalysts for Methane Reforming 50612.2.2 Ni-Based Single-Atom Catalysts for Methane Reforming 51112.2.3 Synergy Between Noble and Transition Metals in SACs 51512.3 Supported Metal Single Atoms for Hydrocarbon Reforming 51712.4 Supported Metal Single Atoms for Aqueous-Phase Reforming of Alcohols 52212.5 Conclusions and Outlook 527Acknowledgments 528References 52813 Electrocatalysis with Single-Metal Atom Sites in Doped Carbon Matrices 531Tristan Asset, Frédéric Maillard, and Frédéric Jaouen13.1 Introduction 53113.2 Synthesis Methods 53313.2.1 Hard Templating with Silica 53713.2.2 Soft Templating with Metal–Organic Frameworks 53713.2.3 Sacrificial Polymers 53913.2.4 Electrospun Polymer/MOF Composites 54013.2.5 Synthesis of Metal–N–C SACs Beyond Fe and Co 54113.2.6 Synthesis of Metal–S–C SACs 54213.3 Characterization Methods and Structure 54213.3.1 Structure of metal SA Sites 54213.3.1.1 Different Fe–NxCy Moieties 54313.3.1.2 Macroscopic Structure 54513.3.1.3 Importance of the Carbon Surface and π-Electron Delocalization 54513.3.2 Characterization Methods Dedicated to Metal–N–C SACs 54613.4 Applications in Electrocatalysis 55013.4.1 Oxygen Reduction Reaction 55013.4.2 CO2 Reduction, N2, and NO3 − Reduction 55413.5 Stability of Metal–N–C Electrocatalysts 55913.5.1 Demetallation in the Absence of Carbon Oxidation 55913.5.2 Changes in the Chemical and Physical Nature of the Metal Ion: Metal–N–C as a Pre-catalyst 56113.5.3 Protonation of Nitrogen Atoms 56213.5.4 Carbon Oxidation Reaction 56213.5.5 Effect of Hydrogen Peroxide 56313.5.6 Migration and Aggregation of metal SAs 56413.5.7 Combined Effects 56513.6 Summary and Conclusions 565References 56714 Supported Metal Single-Atom Photocatalysis 583Bruno F. Machado, Lifeng Liu, Zhipeng Yu, and Joaquim L. Faria14.1 Introduction 58314.2 Synthesis and Characterization Methods 58514.2.1 Synthesis 58514.2.2 Characterization 58714.2.3 Effects of Single Atoms in Photocatalysis 58714.3 SAC Performance in Photocatalysis 58914.3.1 Photocatalytic Water Splitting 58914.3.2 Photocatalytic CO2 Reduction 59214.3.3 Photocatalytic Fixation of Nitrogen 59414.3.4 Photocatalytic Production of H2O2 with Environmental Significance 59414.3.5 Photocatalytic Organic Synthesis 59514.4 SACs for Photoelectrocatalysis 59614.4.1 Photoelectrocatalytic Hydrogen Evolution 59714.4.2 Photoelectrocatalytic Oxygen Evolution 59914.4.3 Photoelectrocatalytic Carbon Dioxide Reduction and Nitrogen Reduction 60114.5 Summary and Outlook 603Acknowledgments 604References 60515 Supported Double and Triple Metal Atom Catalysts 613Zhiwen Chen, Chandra V. Singh, and Qing Jiang15.1 Introduction 61315.2 Synthesis Routes 61515.2.1 High Metal Atom Loading 61515.2.2 Further SAC Grafting 61515.2.3 Preselected Precursors for Double or Triple Atom Active Centers 61515.2.4 Preselected Supports for Supporting DACs or TACs 61715.2.4.1 Metallic Supports 61715.2.4.2 Oxide Supports 61715.2.4.3 2D Material Supports 61915.2.4.4 Highly Porous and Specific Supports 62015.3 Characterization Techniques 62115.4 Applications 62415.4.1 Thermocatalysis 62415.4.1.1 CO Oxidation 62415.4.1.2 Ammonia Synthesis 62515.4.1.3 CO2 Reduction Reaction 62615.4.1.4 Other Chemical Reactions 62715.4.2 Electrocatalysis 62815.4.2.1 Hydrogen Evolution Reaction (HER) 62815.4.2.2 Oxygen Evolution Reaction (OER) 62815.4.2.3 Oxygen Reduction Reaction (ORR) 63015.4.2.4 CO2 Reduction Reaction (CO2RR) 63215.4.2.5 Nitrogen Reduction Reaction (NRR) 63415.4.3 Photocatalysis 63615.5 Current Challenges and Future Outlook 63715.6 Summary and Conclusions 637Acknowledgments 638References 638Index 645