Structure Design and Degradation Mechanisms in Coastal Environments
Inbunden, Engelska, 2015
Av Karim Ait-Mokhtar, Olivier Millet, Abdelkarim Ait-Mokhtar, Olivier Millet
2 459 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.This book provide a series of designs, materials, characterization and modeling, that will help create safer and stronger structures in coastal areas.The authors take a look at the different materials (porous, heterogeneous, concrete...), the moisture transfers in construction materials as well as the degradation caused by external attacks and put forth systems to monitor the structures or evaluate the performance reliability as well as degradation scenarios of coastal protection systems.
Produktinformation
- Utgivningsdatum2015-06-05
- Mått163 x 241 x 25 mm
- Vikt699 g
- FormatInbunden
- SpråkEngelska
- Antal sidor370
- FörlagISTE Ltd and John Wiley & Sons Inc
- ISBN9781848217324
Tillhör följande kategorier
Abdelkarim Aït-Mokhtar, LaSIE, La Rochelle University, France.
- GENERAL INTRODUCTION xiCHAPTER 1. POROUS CONSTRUCTION MATERIALS: CHARACTERIZATIONS AND MODELING 1Abdelkarim AÏT-MOKHTAR, Ameur HAMAMI, Philippe TURCRY and Ouali AMIRI1.1. Definition of porous media 11.2. Different experimental tools for the characterization of porous materials 31.2.1. Measurements of porosity 31.2.2. Pore size distribution by sorption/desorption isotherms 61.2.3. Characterization of pore structure by NMR 71.2.4. Imaging techniques 101.3. Some constructed models for porous microstructures 141.3.1. Models based on pore size distribution 141.3.2. Tridimensional-constructed microstructures 241.4. Some approaches for linking microstructure data to permeability 271.4.1. Permeability from MIP tests 291.4.2. Permeability from constructed microstructures 321.5. Bibliography 34CHAPTER 2. MOISTURE TRANSFERS IN POROUS CONSTRUCTION MATERIALS: MECHANISMS AND APPLICATIONS 41Rafik BELARBI, Kamilia ABAHRI and Abdelkarim TRABELSI2.1. Introduction 412.2. Quantitative characteristics describing moisture in porous media 422.3. Phenomenon of transfer and moisture storage 432.3.1. Moisture diffusion 432.3.2. Capillarity 452.3.3. Infiltration 482.3.4. Physical and chemical adsorption 492.4. Moisture transfer modeling: macroscopic approach 492.4.1. Driving potentials 512.4.2. Conservation equations 522.4.3. Moisture transfer 542.4.4. Heat transfer 572.4.5. Case study 582.5. Transfer and storage properties 662.5.1. Vapor permeability 662.5.2. Moisture diffusion coefficient 772.5.3. Infiltration coefficient 862.5.4. Water vapor sorption–desorption isotherms 932.6. Effect of statistical variability of water vapor desorption used as input data 1012.6.1. Variability of water vapor desorption 1022.6.2. Effect of statistical variability 1052.7. Conclusion 1082.8. Bibliography 109CHAPTER 3. HOMOGENIZATION METHODS FOR IONIC TRANSFERS IN SATURATED HETEROGENEOUS MATERIALS 117Olivier MILLET, Khaled BOURBATACHE, Abdelkarim AÏT-MOKHTAR3.1. General introduction 1173.2. Different techniques of homogenization 1193.2.1. Homogenization via volume averaging 1193.2.2. Periodic homogenization method 1223.3. Periodic homogenization of ionic transfers accounting for electrical double layer 1243.3.1. Dimensional analysis of equations 1283.3.2. Reduction to a one scale problem 1293.3.3. Homogenized microscopic diffusion-migration model with EDL 1323.4. Particular case of ionic transfer without EDL 1343.4.1. Dimensional analysis and scale problem 1343.4.2. Homogenized macroscopic diffusion-migration model 1353.5. Simulations and parametric study of the EDL effects 1373.5.1. Implementation in COMSOL Multiphysics software and validation 1383.5.2. Bidimensional elementary cells 1403.5.3. Three-dimensional elementary cells 1493.6. Calculations of effective chlorides diffusion coefficients using a multiscale homogenization procedure 1533.7. Bibliography 156CHAPTER 4. CHLORIDE TRANSPORT IN UNSATURATED CONCRETE 161Ouali AMIRI, Abdelkarim AÏT-MOKHTAR, Hassan SLEIMAN and Phu-Tho NGUYEN4.1. Introduction 1614.2. Chloride diffusion in unsaturated case 1624.2.1. Definition of the problem 1624.2.2. Theoretical aspects 1634.2.3. Ionic transport model 1644.2.4. Moisture transport model 1714.3. Summary of the model 1744.3.1. Output model 1754.3.2. Constant parameters 1764.4. Difficulties in determining some parameters of the model 1764.5. Numerical method description 1794.5.1. Finite volume method 1794.5.2. Numerical simulations of chloride profiles: parametrical study 1834.6. Conclusions 1934.7. Bibliography 194CHAPTER 5. CONSTRUCTION DEGRADATION BY EXTERNAL SULFATE ATTACKS 197Emmanuel ROZIÈRE, Rana EL-HACHEM and Ahmed LOUKILI5.1. Introduction 1975.2. Mechanisms of degradation 1985.2.1. Chemical reactions and crystallization pressure 1985.2.2. Ingress of sulfate ions and scenario of sulfate attack 2025.2.3. Influence of exposure conditions 2075.3. Influence of concrete composition and standards requirements 2195.3.1. Influence of binder composition 2195.3.2. Influence of concrete composition 2235.3.3. Standards requirements 2285.4. Testing for sulfate resistance 2295.4.1. Material and scale of the tests 2295.4.2. Acceleration of the degradation process 2305.4.3. Recommendations for testing 2355.5. Conclusion 2375.6. Bibliography 238CHAPTER 6. PERFORMANCE-BASED DESIGN OF STRUCTURES AND METHODOLOGY FOR PERFORMANCE RELIABILITY EVALUATION 247Vikram PAKRASHI and Ciarán HANLEY6.1. Introduction 2476.2. Code treatment of structural reliability 2496.2.1. Formulation of structural reliability analysis 2496.2.2. Incorporation of reliability analysis into normative documents 2516.2.3. Reliability targets 2526.2.4. Consistency with deterministic and semi-deterministic methods 2536.3. Second moment transformation and simulation methods 2546.3.1. Problem formulation 2556.3.2. First-order reliability method 2566.3.3. Second-order reliability method 2566.3.4. Monte Carlo simulation for reliability analysis 2586.3.5. Computational aspects and related software 2596.3.6. Practical implementation aspects 2616.4. Load and resistance modeling considering uncertainty 2616.4.1. Uncertainty modeling 2626.4.2. Need for resistance modeling 2646.4.3. Measurement of resistance variables 2656.4.4. Typical loading scenarios 2656.5. Probabilistic assessment of limit-state violation 2656.5.1. Reliability index and probability of failure 2666.5.2. The concept of the design point 2676.5.3. Sensitivity studies 2696.5.4. Parameter importance measures 2706.6. Component versus system reliability 2716.6.1. Network requirements 2716.6.2. Illustration of component and system reliability 2726.6.3. Methods of estimating system reliability from component reliability 2736.6.4. Practical implementation aspects 2756.7. Time-dependent reliability 2766.7.1. Concept of time dependence 2766.7.2. Handling time dependency in reliability analysis 2776.7.3. Time-dependent deterioration modeling 2796.8. Conclusion 2806.9. Bibliography 281CHAPTER 7. COASTAL PROTECTION DEGRADATION SCENARIOS 285Daniel POULAIN and Rémy TOURMENT7.1. Functions and types of coastal dikes 2857.1.1. Main types of dikes 2867.1.2. Functional analysis of the protection system 2957.2. Stress of coastal dikes 3097.2.1. Hydraulic stresses 3107.2.2. Marine geomorphology 3187.2.3. Mechanical stresses 3217.3. Dysfunction and failure of coastal dikes 3227.3.1. Definitions 3227.3.2. Classic process to damage and failure of embankment dikes (elementary mechanisms) 3257.3.3. Case studies of the damage and failure of coastal dikes 3377.4. Bibliography 345LIST OF AUTHORS 347INDEX 349