Space Antenna Handbook
Inbunden, Engelska, 2012
Av William A. Imbriale, Steven Shichang Gao, Luigi Boccia, William A. (California Institute of Technology) Imbriale, Steven Shichang (University of Surrey) Gao, Luigi (Universita della Calabria) Boccia, William A Imbriale
2 719 kr
Beställningsvara. Skickas inom 5-8 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.This book addresses a broad range of topics on antennas for space applications. First, it introduces the fundamental methodologies of space antenna design, modelling and analysis as well as the state-of-the-art and anticipated future technological developments. Each of the topics discussed are specialized and contextualized to the space sector. Furthermore, case studies are also provided to demonstrate the design and implementation of antennas in actual applications. Second, the authors present a detailed review of antenna designs for some popular applications such as satellite communications, space-borne synthetic aperture radar (SAR), Global Navigation Satellite Systems (GNSS) receivers, science instruments, radio astronomy, small satellites, and deep-space applications. Finally it presents the reader with a comprehensive path from space antenna development basics to specific individual applications.Key Features: Presents a detailed review of antenna designs for applications such as satellite communications, space-borne SAR, GNSS receivers, science instruments, small satellites, radio astronomy, deep-space applicationsAddresses the space antenna development from different angles, including electromagnetic, thermal and mechanical design strategies required for space qualificationIncludes numerous case studies to demonstrate how to design and implement antennas in practical scenarios Offers both an introduction for students in the field and an in-depth reference for antenna engineers who develop space antennasThis book serves as an excellent reference for researchers, professionals and graduate students in the fields of antennas and propagation, electromagnetics, RF/microwave/millimetrewave systems, satellite communications, radars, satellite remote sensing, satellite navigation and spacecraft system engineering, It also aids engineers technical managers and professionals working on antenna and RF designs. Marketing and business people in satellites, wireless, and electronics area who want to acquire a basic understanding of the technology will also find this book of interest.
Produktinformation
- Utgivningsdatum2012-05-25
- Mått196 x 254 x 33 mm
- Vikt1 633 g
- FormatInbunden
- SpråkEngelska
- Antal sidor772
- FörlagJohn Wiley & Sons Inc
- ISBN9781119993193
Tillhör följande kategorier
Editors William A. Imbriale, Jet Propulsion Laboratory, California Institute of Technology, USA Steven (Shichang) Gao, Surrey Space Centre, UK Luigi Boccia, University of Calabria, Italy
- Preface xviiAcknowledgments xixAcronyms xxiContributors xxv1 Antenna Basics 1Luigi Boccia and Olav Breinbjerg1.1 Introduction 11.2 Antenna Performance Parameters 21.2.1 Reflection Coefficient and Voltage Standing Wave Ratio 21.2.2 Antenna Impedance 31.2.3 Radiation Pattern and Coverage 41.2.4 Polarization 61.2.5 Directivity 71.2.6 Gain and Realized Gain 81.2.7 Equivalent Isotropically Radiated Power 81.2.8 Effective Area 91.2.9 Phase Center 91.2.10 Bandwidth 91.2.11 Antenna Noise Temperature 91.3 Basic Antenna Elements 101.3.1 Wire Antennas 101.3.2 Horn Antennas 101.3.3 Reflectors 151.3.4 Helical Antennas 171.3.5 Printed Antennas 191.4 Arrays 261.4.1 Array Configurations 281.5 Basic Effects of Antennas in the Space Environment 301.5.1 Multipaction 301.5.2 Passive Inter-modulation 311.5.3 Outgassing 31References 322 Space Antenna Modeling 36Jian Feng Zhang, Xue Wei Ping, Wen Ming Yu, Xiao Yang Zhou, and Tie Jun Cui2.1 Introduction 362.1.1 Maxwell’s Equations 372.1.2 CEM 372.2 Methods of Antenna Modeling 392.2.1 Basic Theory 392.2.2 Method of Moments 402.2.3 FEM 452.2.4 FDTD Method 492.3 Fast Algorithms for Large Space Antenna Modeling 542.3.1 Introduction 542.3.2 MLFMA 542.3.3 Hierarchical Basis for the FEM 622.4 Case Studies: Effects of the Satellite Body on the Radiation Patterns of Antennas 682.5 Summary 73Acknowledgments 73References 733 System Architectures of Satellite Communication, Radar, Navigation and Remote Sensing 76Michael A. Thorburn3.1 Introduction 763.2 Elements of Satellite System Architecture 763.3 Satellite Missions 773.4 Communications Satellites 773.4.1 Fixed Satellite Services 773.4.2 Broadcast Satellite Services (Direct Broadcast Services) 783.4.3 Digital Audio Radio Services 783.4.4 Direct to Home Broadband Services 783.4.5 Mobile Communications Services 783.5 Radar Satellites 793.6 Navigational Satellites 793.7 Remote Sensing Satellites 803.8 Architecture of Satellite Command and Control 803.9 The Communications Payload Transponder 803.9.1 Bent-Pipe Transponders 813.9.2 Digital Transponders 813.9.3 Regenerative Repeater 813.10 Satellite Functional Requirements 813.10.1 Key Performance Concepts: Coverage, Frequency Allocations 823.10.2 Architecture of the Communications Payload 823.10.3 Satellite Communications System Performance Requirements 833.11 The Satellite Link Equation 833.12 The Microwave Transmitter Block 843.12.1 Intercept Point 853.12.2 Output Backoff 863.12.3 The Transmit Antenna and EIRP 873.13 Rx Front-End Block 883.13.1 Noise Figure and Noise Temperature 883.14 Received Power in the Communications System’s RF Link 903.14.1 The Angular Dependencies of the Uplink and Downlink 913.15 Additional Losses in the Satellite and Antenna 913.15.1 Additional Losses due to Propagation Effects and the Atmosphere 913.15.2 Ionospheric Effects – Scintillation and Polarization Rotation 933.16 Thermal Noise and the Antenna Noise Temperature 933.16.1 The Interface between the Antenna and the Communications System 933.16.2 The Uplink Signal to Noise 943.17 The SNR Equation and Minimum Detectable Signal 943.18 Power Flux Density, Saturation Flux Density and Dynamic Range 953.18.1 Important Relationship between PFD and Gain State of the Satellite Transponder 953.19 Full-Duplex Operation and Passive Intermodulation 963.20 Gain and Gain Variation 963.21 Pointing Error 973.22 Remaining Elements of Satellite System Architecture 983.23 Orbits and Orbital Considerations 983.24 Spacecraft Introduction 1003.25 Spacecraft Budgets (Mass, Power, Thermal) 1013.25.1 Satellite Mass 1013.25.2 Satellite Power 1013.25.3 Satellite Thermal Dissipation 1013.26 Orbital Mission Life and Launch Vehicle Considerations 1023.27 Environment Management (Thermal, Radiation) 1023.28 Spacecraft Structure (Acoustic/Dynamic) 1033.29 Satellite Positioning (Station Keeping) 1033.30 Satellite Positioning (Attitude Control) 1043.31 Power Subsystem 1043.32 Tracking, Telemetry, Command and Monitoring 105References 1054 Space Environment and Materials 106J. Santiago-Prowald and L. Salghetti Drioli4.1 Introduction 1064.2 The Space Environment of Antennas 1064.2.1 The Radiation Environment 1074.2.2 The Plasma Environment 1094.2.3 The Neutral Environment 1104.2.4 Space Environment for Typical Spacecraft Orbits 1114.2.5 Thermal Environment 1114.2.6 Launch Environment 1134.3 Selection of Materials in Relation to Their Electromagnetic Properties 1174.3.1 RF Transparent Materials and Their Use 1174.3.2 RF Conducting Materials and Their Use 1174.3.3 Material Selection Golden Rules for PIM Control 1184.4 Space Materials and Manufacturing Processes 1184.4.1 Metals and Their Alloys 1184.4.2 Polymer Matrix Composites 1214.4.3 Ceramics and Ceramic Matrix Composites 1254.5 Characterization of Mechanical and Thermal Behaviour 1274.5.1 Thermal Vacuum Environment and Outgassing Screening 1274.5.2 Fundamental Characterization Tests of Polymers and Composites 1284.5.3 Characterization of Mechanical Properties 1304.5.4 Thermal and Thermoelastic Characterization 131Acknowledgements 131References 1315 Mechanical and Thermal Design of Space Antennas 133J. Santiago-Prowald and Heiko Ritter5.1 Introduction: The Mechanical–Thermal–Electrical Triangle 1335.1.1 Antenna Product 1345.1.2 Configuration, Materials and Processes 1355.1.3 Review of Requirements and Their Verification 1365.2 Design of Antenna Structures 1365.2.1 Typical Design Solutions for Reflectors 1365.2.2 Structural Description of the Sandwich Plate Architecture 1435.2.3 Thermal Description of the Sandwich Plate Architecture 1435.2.4 Electrical Description of the Sandwich Plate Architecture in Relation to Thermo-mechanical Design 1445.3 Structural Modelling and Analysis 1445.3.1 First-Order Plate Theory 1455.3.2 Higher Order Plate Theories 1485.3.3 Classical Laminated Plate Theory 1485.3.4 Homogeneous Isotropic Plate Versus Symmetric Sandwich Plate 1495.3.5 Skins Made of Composite Material 1505.3.6 Honeycomb Core Characteristics 1525.3.7 Failure Modes of Sandwich Plates 1525.3.8 Mass Optimization of Sandwich Plate Architecture for Antennas 1545.3.9 Finite Element Analysis 1565.3.10 Acoustic Loads on Antennas 1595.4 Thermal and Thermoelastic Analysis 1665.4.1 The Thermal Environment of Space Antennas 1665.4.2 Transverse Thermal Conductance Model of the Sandwich Plate 1675.4.3 Thermal Balance of the Flat Sandwich Plate 1685.4.4 Thermal Distortions of a Flat Plate in Space 1695.4.5 Thermoelastic Stability of an Offset Parabolic Reflector 1715.4.6 Thermal Analysis Tools 1725.4.7 Thermal Analysis Cases 1735.4.8 Thermal Model Uncertainty and Margins 1735.5 Thermal Control Strategies 1735.5.1 Requirements and Principal Design Choices 1735.5.2 Thermal Control Components 1745.5.3 Thermal Design Examples 176Acknowledgements 177References 1786 Testing of Antennas for Space 179Jerzy Lemanczyk, Hans Juergen Steiner, and Quiterio Garcia6.1 Introduction 1796.2 Testing as a Development and Verification Tool 1806.2.1 Engineering for Test 1806.2.2 Model Philosophy and Definitions 1826.2.3 Electrical Model Correlation 1906.2.4 Thermal Testing and Model Correlation 1956.3 Antenna Testing Facilities 2036.3.1 Far-Field Antenna Test Ranges 2036.3.2 Compact Antenna Test Ranges 2036.3.3 Near-Field Measurements and Facilities 2126.3.4 Environmental Test Facilities and Mechanical Testing 2206.3.5 PIM Testing 2246.4 Case Study: SMOS 2266.4.1 The SMOS MIRAS Instrument 2276.4.2 SMOS Model Philosophy 2316.4.3 Antenna Pattern Test Campaign 238References 2487 Historical Overview of the Development of Space Antennas 250Antoine G. Roederer7.1 Introduction 2507.2 The Early Days 2527.2.1 Wire and Slot Antennas on Simple Satellite Bodies 2527.2.2 Antenna Computer Modelling Takes Off 2547.2.3 Existing/Classical Antenna Designs Adapted for Space 2597.3 Larger Reflectors with Complex Feeding Systems 2627.3.1 Introduction 2627.3.2 Multi-frequency Antennas 2637.3.3 Large Unfurlable Antennas 2717.3.4 Solid Surface Deployable Reflector Antennas 2797.3.5 Polarization-Sensitive and Shaped Reflectors 2827.3.6 Multi-feed Antennas 2857.4 Array Antennas 2977.4.1 Conformal Arrays on Spin-Stabilized Satellites 2977.4.2 Arrays for Remote Sensing 2987.4.3 Arrays for Telecommunications 3027.5 Conclusions 306Acknowledgements 307References 3078 Deployable Mesh Reflector Antennas for Space Applications: RF Characterizations 314Paolo Focardi, Paula R. Brown, and Yahya Rahmat-Samii8.1 Introduction 3148.2 History of Deployable Mesh Reflectors 3158.3 Design Considerations Specific to Mesh Reflectors 3208.4 The SMAP Mission – A Representative Case Study 3208.4.1 Mission Overview 3208.4.2 Key Antenna Design Drivers and Constraints 3228.4.3 RF Performance Determination of Reflector Surface Materials 3278.4.4 RF Modeling of the Antenna Radiation Pattern 3298.4.5 Feed Assembly Design 3388.4.6 Performance Verification 3408.5 Conclusion 341Acknowledgments 341References 3419 Microstrip Array Technologies for Space Applications 344Antonio Montesano, Luis F. de la Fuente, Fernando Monjas, Vicente GarcÍa, Luis E. Cuesta, Jennifer Campuzano, Ana Trastoy, Miguel Bustamante, Francisco Casares, Eduardo Alonso, David Álvarez, Silvia Arenas, José Luis Serrano, and Margarita Naranjo9.1 Introduction 3449.2 Basics of Array Antennas 3459.2.1 Functional (Driving) Requirements and Array Design Solutions 3459.2.2 Materials for Passive Arrays Versus Environmental and Design Requirements 3479.2.3 Array Optimization Methods and Criteria 3499.3 Passive Arrays 3509.3.1 Radiating Panels for SAR Antennas 3509.3.2 Navigation Antennas 3549.3.3 Passive Antennas for Deep Space 3619.4 Active Arrays 3639.4.1 Key Active Elements in Active Antennas: Amplifiers 3639.4.2 Active Hybrids 3669.4.3 The Thermal Dissipation Design Solution 3679.4.4 Active Array Control 3699.4.5 Active Arrays for Communications and Data Transmission 3709.5 Summary 383Acknowledgements 383References 38410 Printed Reflectarray Antennas for Space Applications 385Jose A. Encinar10.1 Introduction 38510.2 Principle of Operation and Reflectarray Element Performance 38810.3 Analysis and Design Techniques 39110.3.1 Analysis and Design of Reflectarray Elements 39110.3.2 Design and Analysis of Reflectarray Antennas 39310.3.3 Broadband Techniques 39610.4 Reflectarray Antennas for Telecommunication and Broadcasting Satellites 40010.4.1 Contoured-Beam Reflectarrays 40010.4.2 Dual-Coverage Transmit Antenna 40210.4.3 Transmit–Receive Antenna for Coverage of South America 40510.5 Recent and Future Developments for Space Applications 41410.5.1 Large-Aperture Reflectarrays 41410.5.2 Inflatable Reflectarrays 41510.5.3 High-Gain Antennas for Deep Space Communications 41610.5.4 Multibeam Reflectarrays 41810.5.5 Dual-Reflector Configurations 42010.5.6 Reconfigurable and Steerable Beam Reflectarrays 42410.5.7 Conclusions and Future Developments 428Acknowledgments 428References 42911 Emerging Antenna Technologies for Space Applications 435Safieddin Safavi-Naeini and Mohammad Fakharzadeh11.1 Introduction 43511.2 On-Chip/In-Package Antennas for Emerging Millimeter-Wave Systems 43611.2.1 Recent Advances in On-Chip Antenna Technology 43611.2.2 Silicon IC Substrate Limitations for On-Chip Antennas 43711.2.3 On-Chip Antenna on Integrated Passive Silicon Technology 43911.3 Integrated Planar Waveguide Technologies 44111.4 Microwave/mmW MEMS-Based Circuit Technologies for Antenna Applications 44511.4.1 RF/Microwave MEMS-Based Phase Shifter 44711.4.2 Reflective-Type Phase Shifters for mmW Beam-Forming Applications 44711.5 Emerging THz Antenna Systems and Integrated Structures 44811.5.1 THz Photonics Techniques: THz Generation Using Photo-mixing Antennas 45111.5.2 THz Generation Using a Photo-mixing Antenna Array 45311.6 Case Study: Low-Cost/Complexity Antenna Technologies for Land-Mobile Satellite Communications 45411.6.1 System-Level Requirements 45411.6.2 Reconfigurable Very Low-Profile Antenna Array Technologies 45411.6.3 Beam Steering Techniques 45511.6.4 Robust Zero-Knowledge Beam Control Algorithm 45711.6.5 A Ku-band Low-Profile, Low-Cost Array System for Vehicular Communication 45811.7 Conclusions 462References 46212 Antennas for Satellite Communications 466Eric Amyotte and LuÍs Martins Camelo12.1 Introduction and Design Requirements 46612.1.1 Link Budget Considerations 46712.1.2 Types of Satellite Communications Antennas 46912.1.3 Materials 46912.1.4 The Space Environment and Its Design Implications 47012.1.5 Designing for Commercial Applications 47012.2 UHF Satellite Communications Antennas 47112.2.1 Typical Requirements and Solutions 47112.2.2 Single-Element Design 47212.2.3 Array Design 47312.2.4 Multipactor Threshold 47312.3 L/S-band Mobile Satellite Communications Antennas 47412.3.1 Introduction 47412.3.2 The Need for Large Unfurlable Reflectors 47412.3.3 Beam Forming 47512.3.4 Hybrid Matrix Power Amplification 47612.3.5 Feed Array Element Design 47812.3.6 Diplexers 47812.3.7 Range Measurements 47912.4 C-, Ku- and Ka-band FSS/BSS Antennas 47912.4.1 Typical Requirements and Solutions 47912.4.2 The Shaped-Reflector Technology 48012.4.3 Power Handling 48112.4.4 Antenna Structures and Reflectors 48112.4.5 Reflector Antenna Geometries 48212.4.6 Feed Chains 49112.5 Multibeam Broadband Satellite Communications Antennas 49612.5.1 Typical Requirements and Solutions 49612.5.2 SFB Array-Fed Reflector Antennas 49712.5.3 FAFR Antennas 50012.5.4 DRA Antennas 50312.5.5 RF Sensing and Tracking 50312.6 Antennas for Non-geostationary Constellations 50412.6.1 Typical Requirements and Solutions 50412.6.2 Global Beam Ground Links 50512.6.3 High-Gain Ground Links 50512.6.4 Intersatellite Links or Cross-links 50612.6.5 Feeder Links 507Acknowledgments 508References 50813 SAR Antennas 511Pasquale Capece and Andrea Torre13.1 Introduction to Spaceborne SAR Systems 51113.1.1 General Presentation of SAR Systems 51113.1.2 Azimuth Resolution in Conventional Radar and in SAR 51213.1.3 Antenna Requirements Versus Performance Parameters 51413.2 Challenges of Antenna Design for SAR 51813.2.1 Reflector Antennas 51813.2.2 Active Antennas and Subsystems 51913.3 A Review of the Development of Antennas for Spaceborne SAR 53413.3.1 TecSAR 53413.3.2 SAR- Lupe 53513.3.3 ASAR (EnviSat) 53513.3.4 Radarsat 1 53513.3.5 Radarsat 2 53513.3.6 Palsar (ALOS) 53513.3.7 TerraSAR-X 53613.3.8 COSMO (SkyMed) 53613.4 Case Studies of Antennas for Spaceborne SAR 53913.4.1 Instrument Design 53913.4.2 SAR Antenna 54013.5 Ongoing Developments in SAR Antennas 54413.5.1 Sentinel 1 54413.5.2 Saocom Mission 54413.5.3 ALOS 2 54513.5.4 COSMO Second Generation 54513.6 Acknowledgments 546References 54614 Antennas for Global Navigation Satellite System Receivers 548Chi-Chih Chen, Steven (Shichang) Gao, and Moazam Maqsood14.1 Introduction 54814.2 RF Requirements of GNSS Receiving Antenna 55114.2.1 General RF Requirements 55114.2.2 Advanced Requirements for Enhanced Position Accuracy and Multipath Signal Suppression 55614.3 Design Challenges and Solutions for GNSS Antennas 56114.3.1 Wide Frequency Coverage 56214.3.2 Antenna Delay Variation with Frequency and Angle 56214.3.3 Antenna Size Reduction 56714.3.4 Antenna Platform Scattering Effect 56814.4 Common and Novel GNSS Antennas 57214.4.1 Single-Element Antenna 57214.4.2 Multi-element Antenna Array 58014.5 Spaceborne GNSS Antennas 58214.5.1 Requirements for Antennas On Board Spaceborne GNSS Receivers 58214.5.2 A Review of Antennas Developed for Spaceborne GNSS Receivers 58414.6 Case Study: Dual-Band Microstrip Patch Antenna for Spacecraft Precise Orbit Determination Applications 58614.6.1 Antenna Development 58614.6.2 Results and Discussions 58814.7 Summary 591References 59215 Antennas for Small Satellites 596Steven (Shichang) Gao, Keith Clark, Jan Zackrisson, Kevin Maynard, Luigi Boccia, and Jiadong Xu15.1 Introduction to Small Satellites 59615.1.1 Small Satellites and Their Classification 59615.1.2 Microsatellites and Constellations of Small Satellites 59715.1.3 Cube Satellites 59815.1.4 Formation Flying of Multiple Small Satellites 59915.2 The Challenges of Designing Antennas for Small Satellites 60015.2.1 Choice of Operating Frequencies 60015.2.2 Small Ground Planes Compared with the Operational Wavelength 60115.2.3 Coupling between Antennas and Structural Elements 60115.2.4 Antenna Pattern 60215.2.5 Orbital Height 60215.2.6 Development Cost 60215.2.7 Production Costs 60215.2.8 Testing Costs 60215.2.9 Deployment Systems 60315.2.10 Volume 60315.2.11 Mass 60315.2.12 Shock and Vibration Loads 60315.2.13 Material Degradation 60315.2.14 Atomic Oxygen 60315.2.15 Material Outgassing 60415.2.16 Creep 60415.2.17 Material Charging 60415.2.18 The Interaction between Satellite Antennas and Structure 60415.3 Review of Antenna Development for Small Satellites 60615.3.1 Antennas for Telemetry, Tracking and Command (TT&C) 60615.3.2 Antennas for High-Rate Data Downlink 60915.3.3 Antennas for Global Navigation Satellite System (GNSS) Receivers and Reflectometry 61515.3.4 Antennas for Intersatellite Links 61815.3.5 Other Antennas 61915.4 Case Studies 62115.4.1 Case Study 1: Antenna Pointing Mechanism and Horn Antenna 62115.4.2 Case Study 2: X-band Downlink Helix Antenna 62315.5 Conclusions 627References 62816 Space Antennas for Radio Astronomy 629Paul F. Goldsmith16.1 Introduction 62916.2 Overview of Radio Astronomy and the Role of Space Antennas 62916.3 Space Antennas for Cosmic Microwave Background Studies 63116.3.1 The Microwave Background 63116.3.2 Soviet Space Observations of the CMB 63216.3.3 The Cosmic Background Explorer (COBE) Satellite 63316.3.4 The Wilkinson Microwave Anisotropy Probe (WMAP) 63516.3.5 The Planck Mission 63716.4 Space Radio Observatories for Submillimeter/Far-Infrared Astronomy 64116.4.1 Overview of Submillimeter/Far-Infrared Astronomy 64116.4.2 The Submillimeter Wave Astronomy Satellite 64316.4.3 The Odin Orbital Observatory 64616.4.4 The Herschel Space Observatory 64816.4.5 The Future: Millimetron, CALISTO, and Beyond 65016.5 Low-Frequency Radio Astronomy 65216.5.1 Overview of Low-Frequency Radio Astronomy 65216.5.2 Early Low-Frequency Radio Space Missions 65316.5.3 The Future 65516.6 Space VLBI 65516.6.1 Overview of Space VLBI 65516.6.2 HALCA 65616.6.3 RadioAstron 65816.7 Summary 658Acknowledgments 660References 66017 Antennas for Deep Space Applications 664Paula R. Brown, Richard E. Hodges, and Jacqueline C. Chen17.1 Introduction 66417.2 Telecommunications Antennas 66517.3 Case Study I – Mars Science Laboratory 66617.3.1 MSL Mission Description 66617.3.2 MSL X-band Antennas 66817.3.3 MSL UHF Antennas 67617.3.4 MSL Terminal Descent Sensor (Landing Radar) 68017.4 Case Study II – Juno 68117.4.1 Juno Mission Description 68117.4.2 Telecom Antennas 68217.4.3 Juno Microwave Radiometer Antennas 684Acknowledgments 692References 69318 Space Antenna Challenges for Future Missions, Key Techniques and Technologies 695Cyril Mangenot and William A. Imbriale18.1 Overview of Chapter Contents 69518.2 General Introduction 69618.3 General Evolution of Space Antenna Needs and Requirements 69718.4 Develop Large-Aperture Antennas 69918.4.1 Problem Area and Challenges 69918.4.2 Present and Expected Future Space Missions 70018.4.3 Promising Antenna Concepts and Technologies 70218.5 Increase Telecommunication Satellite Throughput 70718.5.1 Problem Area and Challenges 70718.5.2 Present and Expected Future Space Missions 70718.5.3 Promising Antenna Concepts and Technologies 70818.6 Enable Sharing the Same Aperture for Multiband and Multipurpose Antennas 70918.6.1 Problem Area and Challenges 70918.6.2 Present and Expected Future Space Missions 71018.6.3 Promising Antenna Concepts and Technologies 71018.7 Increase the Competitiveness of Well-Established Antenna Products 71018.7.1 Problem Area and Challenges 71018.7.2 Present and Expected Future Space Missions 71118.7.3 Promising Antenna Concepts and Technologies 71218.8 Enable Single-Beam In-Flight Coverage/Polarization Reconfiguration 71318.8.1 Problem Area and Challenges 71318.8.2 Present and Expected Future Space Missions 71418.8.3 Promising Antenna Concepts and Technologies 71418.9 Enable Active Antennas at Affordable Cost 71518.9.1 Problem Area and Challenges 71518.9.2 Present and Expected Future Space Missions 71718.9.3 Promising Antenna Concepts and Technologies 71818.10 Develop Innovative Antennas for Future Earth Observation and Science Instruments 72418.10.1 Problem Area and Challenges 72418.10.2 Present and Expected Future Space Missions 72518.10.3 Promising Antenna Concepts and Technologies 72918.11 Evolve Towards Mass Production of Satellite and User Terminal Antennas 73218.11.1 Problem Area and Challenges 73218.11.2 Present and Expected Future Space Missions 73218.11.3 Promising Antenna Concepts and Technologies 73218.12 Technology Push for Enabling New Missions 73418.12.1 Problem Area and Challenges 73418.12.2 Promising Antenna Concepts and Technologies 73418.13 Develop New Approaches for Satellite/Antenna Modelling and Testing 73518.13.1 Problem Area and Challenges 73518.13.2 Promising Antenna Concepts and Technologies 73618.14 Conclusions 737Acronyms 738Acknowledgements 740References 740Index 741