Sol-Gel Handbook, 3 Volume Set
Synthesis, Characterization, and Applications
Inbunden, Engelska, 2015
AvDavid Levy,Marcos Zayat,SPAIN) Levy, David (Inst. de Ciencia de Materiales de Madrid, ICMM-CSIC,SPAIN) Zayat, Marcos (Inst. de Ciencia de Materiales de Madrid, ICMM-CSIC
6 529 kr
Beställningsvara. Skickas inom 11-20 vardagar. Fri frakt för medlemmar vid köp för minst 249 kr.
Produktinformation
- Utgivningsdatum2015-09-23
- Mått178 x 252 x 91 mm
- Vikt3 878 g
- FormatInbunden
- SpråkEngelska
- Antal sidor1 616
- FörlagWiley-VCH Verlag GmbH
- ISBN9783527334865
Tillhör följande kategorier
David Levy is a Research Professor and head of the Sol-Gel Group at the Materials Science Institute of Madrid (ICMM) of the Consejo Superior de Investigaciones Cientí cas. His research interests are optical materials (bulk materials; thin- lm coatings as AR optical coatings, protection transparent coatings and functional coatings; oxide nanoparticles) and liquid crystal materials, by Sol-Gel processing and their applications. During his time at The Hebrew University of Jerusalem David Levy pioneered the sol-gel process for the preparation of organically doped silica-gel glasses. He has more than 130 publications and a number of patents to his name, and has received numerous prizes in recognition of his groundbreaking work on sol-gel materials, including the ?First Ulrich Prize? and the nomination to King Juan Carlos-I research award. Marcos Zayat is currently vice-director of the Materials Science Institute of Madrid (ICMM). His scienti c interests are centered on the design of new optical coatings and the characterization of their physicochemical properties. After having obtained his PhD in Materials Science from The Hebrew University of Jerusalem in 1997, Marcos Zayat joined the ICMM where he continues developing sol-gel materials for optical and electrooptical applications. He has published more than fty original articles in prestigious scienti c journals.
- Preface XXIList of Contributors XXIIIVolume One: Synthesis and ProcessingPart One Sol–Gel Chemistry and Methods 11 Chemistry and Fundamentals of the Sol–Gel Process 3Ulrich Schubert1.1 Introduction 31.2 Hydrolysis and Condensation Reactions 41.2.1 Silica-Based Materials 41.2.1.1 Precursor(s) 91.2.1.2 Catalyst (pH) 91.2.1.3 Alkoxo Group/H2O Ratio (Rw) 91.2.1.4 Solvent 101.2.1.5 Electrolytes 101.2.2 Metal Oxide-Based Materials 111.3 Sol–Gel Transition (Gelation) 171.3.1 Hydrolytic Sol–Gel Processes 171.3.2 Nonhydrolytic Sol–Gel Processes 221.3.3 Inorganic–Organic Hybrid Materials 221.4 Aging and Drying 241.5 Postsynthesis Processing 261.6 Concluding Remarks 26References 272 Nonhydrolytic Sol–Gel Methods 29Rupali Deshmukh and Markus Niederberger2.1 Introduction 292.2 Nonaqueous Sol–Gel Routes to Metal Oxide Nanoparticles 312.2.1 Surfactant-Assisted Synthesis 312.2.2 Solvent-Controlled Synthesis 332.2.2.1 Benzyl Alcohol Route 332.2.2.2 tert-Butyl Alcohol Route 372.2.2.3 Ether Route 372.2.2.4 Acetophenone Route 382.2.2.5 Carboxylic Acid Route 392.2.2.6 Benzylamine Route 392.2.3 Microwave-Assisted Synthesis 402.3 Nonaqueous Sol–Gel Synthesis beyond Metal Oxides 432.3.1 Composites 432.3.2 Organic–Inorganic Hybrid Materials 442.3.3 Metal Sulfides 462.3.4 Metals 472.4 Chemical Reaction and Crystallization Mechanisms 482.4.1 Introduction 482.4.2 Overview of the Main Chemical Reactions 492.4.3 Classical and Nonclassical Crystallization Mechanisms 512.4.4 Selected Examples 512.5 Assembly and Processing 562.5.1 Introduction 562.5.2 Nanoparticle Arrays and Superlattices 572.5.3 Oriented Attachment and Mesocrystals 592.5.4 Films 602.6 Summary and Outlook 63References 633 Integrative Sol–Gel Chemistry 71M. Depardieu, N. Kinadjian, D. Portehault, R. Backov, and Clément Sanchez3.1 Introduction 713.2 Design of 0D Structures 723.2.1 Aerosol Processing 723.2.2 Capsules 753.2.2.1 Simple Emulsions Preparation 763.2.2.2 Mineralization of the Wax Dispersion 763.2.2.3 Temperature-Triggered Release 773.2.2.4 Introducing a Hydrophilic Compartment 793.2.2.5 mailto:Water@Wax@Water">Water@Wax@Water Emulsion Formulation 803.2.2.6 mailto:Water@Wax@Water">Water@Wax@Wate Emulsion Mineralization 803.2.2.7 Temperature-Triggered Release 813.2.2.8 Wax@Water@Oil">Wax@Water@Oil Emulsion Formulation 833.2.2.9 mailto:Wax@Water@Oil">Wax@Water@Oil Emulsion Mineralization 843.2.2.10 Temperature-Triggered Release 853.3 Design of 1D Macroscopic Structures 883.3.1 Electrospinning 893.3.1.1 A First Case: TiO2 Fibers for Dye-Sensitized Solar Cells 893.3.1.2 Coupling Sol–Gel Reactions and Electrospinning 903.3.2 Extrusion 933.3.2.1 V2O5 Fibers as Alcohol Sensor 943.3.2.2 Composite Fibers Prepared with the Help of Polymer Dehydration/Reticulation 963.4 Design of Extended 2D Structures 993.5 Design of Extended 3D Structures 993.5.1 Foams 993.5.1.1 Silica Foams: Si-(HIPE) 1013.5.1.2 mailto:Eu3+@Organo-Si-(HIPE">Eu3+@Organo-Si-(HIPE): Photonic Properties 1013.5.1.3 mailto:Pd@Organo-Si-(HIPE">Pd@Organo-Si-(HIPE): Cycling Heck Catalysis Reactions 1033.5.1.4 mailto:Enzyme@Organo-Si-(HIPE">Enzyme@Organo-Si-(HIPE): High Efficiency Biocatalysts 1043.5.1.5 Si-(HIPE) as Hard Template to Carbonaceous Foams and Applications 1063.5.1.6 Carbon-(HIPE) as Li Ion Negative Electrodes 1073.5.1.7 mailto:LiBH4@Carbon-(HIPE">LiBH4@Carbon-(HIPE) for Hydrogen Storage and Release 1073.5.2 Aerogels 1123.5.3 Dense Nanostructured Monoliths 1123.6 Conclusions 113References 1154 Synthetic Self-Assembly Strategies and Methods 121Alexandra Zamboulis, Olivier Dautel, and Joël J.E. Moreau4.1 Introduction 1214.2 Templated Synthesis of Inorganic Materials 1224.2.1 Self-Assembly of Mesoporous Silicas 1234.2.2 Hydrothermal Rearrangement and Postsynthesis Treatment 1254.2.3 Self-Assembly of Thin Films 1264.2.4 Self-Assembly of Functionalized Mesoporous Silicas 1274.3 Self-Assembled Organosilicas 1284.3.1 Control of the Pore Structure: Templated Synthesis of Mesoporous Bridged Silsesquioxanes 1294.3.2 Self-Organized Organosilicas 1324.3.3 Self-Assembly Synthetic Strategies for Organosilicas with Optical Properties 1394.3.3.1 Toward an H-Aggregation/Card Pack Stacking 1414.3.3.2 From a J- to an H-Aggregation 1494.3.3.3 Transcription of the J-Aggregation from the Precursor to the Material 1534.4 Conclusions 154References 1545 Processing of Sol–Gel Films from a Top-Down Route 165Plinio Innocenzi and Luca Malfatti5.1 Introduction 1655.2 Top-Down Processing by UV Photoirradiation 1675.2.1 UV Curing of Oxides 1675.2.2 UV Curing of Hybrid Sol–Gel Films 1695.2.3 UV Photoirradiation of Mesoporous Films 1705.2.4 Nanocomposite So–Gel Films by UV Photoirradiation 1735.3 Laser Irradiation and Writing 1745.3.1 Thermal-Induced Effects 1745.3.2 Laser-Induced Microfabrication 1755.3.3 Nanofabrication by Two- or Multiphoton Absorption 1775.4 Electron Beam Lithography 1785.5 Top-Down Processing by Hard X-Rays 1815.6 Soft X-Ray Lithography 184References 1866 Sol–Gel Precursors 195Vadim G. Kessler6.1 Introduction 1956.2 Simple Silicon Alkoxides 1966.3 Functional and Mixed Ligand Silicon Alkoxides for More Facile Hydrolysis 1976.4 Functional Silicon Alkoxides: Precursors of Hybrid Materials 1986.5 Simple Metal Alkoxides 2006.5.1 Commercially Available Simple Metal Alkoxide 2026.5.2 Customary Synthesis of Metal Alkoxide Precursors 2096.5.2.1 Interaction of Metals with Alcohols 2096.5.2.2 Alcoholysis of Complexes Derived from Volatile Acids Weaker Than Alcohols 2096.5.2.3 Basic Alcoholysis of Metal Halides: Metathesis Reaction 2106.5.2.4 Alcoholysis of Metal Oxides 2106.5.2.5 Electrochemical Oxidation of Metals in Alcohols 2116.5.2.6 Alcohol Interchange Reaction 2116.6 Functional and Mixed Ligand Metal Alkoxides for More Facile Hydrolysis and Stabilization of Resulting Colloids 2126.7 Precursor and Solvent Choice for Nonhydrolytic Sol–Gel Processes 2136.8 Synthesis of Complex Materials: Single-Source Precursor Approach 2146.9 Sol–Gel Precursors for Special Applications: Biomedical and Luminescent 215Abbreviations 216References 216Part Two Sol–Gel Materials 2257 Nanoparticles and Composites 227Guido Kickelbick7.1 Introduction 2277.2 Aqueous Sol–Gel Process 2287.2.1 Silica Nanoparticles 2287.2.1.1 Properties of Silica Nanoparticles 2307.2.2 Metal Oxides 2317.3 Nonaqueous Sol–Gel Process 2327.3.1 Metal Oxides 2327.4 Surface Functionalization of Nanoparticles 2347.5 Nanocomposites 2367.5.1 Dispersion of Silica Nanoparticles in Polymer Matrices 2377.5.2 In Situ Production of Silica Particles in a Polymer Matrix 2377.5.3 Melt Production of Silica Particles in a Polymer Matrix 2387.5.4 Properties of Nanoparticle Polymer Nanocomposites 2387.6 Conclusions 239References 2398 Oxide Powders and Ceramics 245Maria Zaharescu and Luminita Predoana8.1 Oxide Powders Obtained by Sol–Gel Methods 2458.2 Ceramics from Sol–Gel Oxide Powders 2488.3 Pure and Doped Single Oxide Ceramics 2498.3.1 Nanocrystalline Yttria 2498.3.2 Gd-Doped Ceria 2498.4 Multicomponent Ceramics 2508.4.1 Zirconium Titanate 2508.4.2 Lead Titanate 2518.4.3 Zr-Doped PbTiO3 2518.4.4 Nb-Doped PZT 2528.4.5 W-Doped PZT 2528.4.6 Ca-Doped PbTiO3 2538.4.7 Barium Titanate 2558.4.8 (Er, Yb)-Doped BaTiO3 2568.4.9 Barium Strontium Titanate 2568.4.10 Co-Doped Barium Strontium Titanate 2578.4.11 Mg-Doped Barium Strontium Titanate 2578.4.12 Magnesium Titanate 2578.4.13 B-Doped MgTiO3 2588.4.14 Calcium Titanate 2588.4.15 CaTiO3–(Sm, Nd)AlO3 Solid Solution 2598.4.16 (Co, Cu)-Doped Calcium Titanate 2598.4.17 (Na, K)-Doped Bismuth Titanate 2608.4.18 Mg-Doped Barium Tantalate 2618.4.19 Lead-Free Ba(Fe0.5Nb0.5)O3 2618.4.20 B-Doped Mg4Nb2O9 2618.4.21 Ce-Doped Lutetium Aluminum Garnet 2628.4.22 Ce-Doped Barium Yttrium Garnet 2638.4.23 Aluminum Titanate 2638.4.24 Magnesium Aluminum Titanate 2648.4.25 Lanthanum Cobaltite 2658.5 Composite Ceramics 2668.5.1 Al2O3–ZrO2 Nanocomposite 2668.5.2 Alumina–Yttrium Aluminum Garnet 2698.6 Conclusions 269References 2709 Thin Film Deposition Techniques 277David Grosso, Cédric Boissière, and Marco Faustini9.1 Introduction 2779.2 General Aspects of Liquid Deposition Techniques 2809.2.1 A Multistep Process between Chemistry and Engineering 2809.2.2 Initial Solution (Sol–Gel Chemistry) 2809.2.3 Deposition Step (Solution Spreading) 2839.2.4 Evaporation Step (Progressive Concentration) 2849.2.5 Optional Patterning Processes 2889.2.6 Postdeposition Treatments (Stabilization, Consolidation, and Modification) 2889.3 Spin Coating 2899.3.1 Generalities on Spin Coating 2899.3.2 Fundamentals of Spin Coating 2909.3.3 Advantages and Drawbacks of Spin Coating 2949.3.4 Some Critical Examples of Films Prepared by Spin Coating 2959.4 Dip Coating 2969.4.1 Generalities on Dip Coating 2969.4.2 Fundamentals of Dip Coating 2979.4.2.1 Model for the Capillarity Regime 2999.4.2.2 Model for the Draining Regime 3009.4.2.3 Combining Models to Describe Simultaneously Both Regimes 3019.4.3 Advantages and Drawbacks of Dip Coating 3029.4.4 Some Critical Examples of Films Prepared by Dip Coating 3029.5 Alternative and Emerging Techniques 3049.5.1 Roll-to-Roll Coating Techniques 3049.5.2 Droplet-Assisted Deposition (Aerosol and Inkjet) 3049.5.3 Electro-assisted Deposition 3089.6 General Perspectives 310References 31010 Monolithic Sol–Gel Materials 317Raz Gvishi10.1 Introduction 31710.2 Principles of Sol–Gel Monolith Fabrication 31910.2.1 Hydrolysis and Condensation 31910.2.2 Role of Drying in Monolith Fabrication 32010.2.3 Chemical Composition Effects 32110.2.3.1 Metal Alkoxide Precursor Types 32110.2.3.2 pH Effect: Type of Catalyst Used 32110.2.3.3 H2O: Si Molar Ratio (R) 32210.2.3.4 Steric Effect of Precursor Ligand Groups 32310.2.3.5 Functionality of Organically Modified Silanes 32310.3 Routes for Fabrication of Monoliths 32410.3.1 Xerogel Monoliths 32510.3.1.1 Methods for Preparing Nonsilica Xerogel Monoliths 32510.3.1.2 Methods for Preparing Silica Xerogel Monoliths 32710.3.2 Organically Modified Silane Monoliths 32910.3.2.1 ORMOSIL Inorganic–Organic Hybrid Monoliths in One Phase 33010.3.2.2 Hybrid Monoliths by Fast Sol–Gel (FSG) Process 33110.3.3 Multiphasic Composite Hybrid Monoliths 33310.3.4 Aerogel Monoliths 33810.4 Summary 339References 34011 Hollow Inorganic Spheres 345Atsushi Shimojima11.1 Introduction 34511.2 General Strategies 34511.2.1 Templating Methods 34511.2.2 Template-Free Methods 34711.3 Typical Synthesis Procedures 34711.3.1 Hollow Silica Particles 34711.3.2 Hollow Mesoporous Silica Particles 35011.3.3 Hollow Organosilica Nanoparticles 35411.3.4 Hollow Crystalline Silicate Particles 35511.3.5 Hollow Titania (TiO2) Particles 35711.3.6 Hollow Particles of Other Metal Oxides 35911.4 Applications 36011.4.1 Antireflective Coatings 36011.4.2 Catalysis 36111.4.3 Lithium Ion Battery 36211.4.4 Biomedical Applications 36311.5 Summary 365References 36512 Sol–Gel Coatings by Electrochemical Deposition 373Liang Liu and Daniel Mandler12.1 Introduction 37312.2 Mechanism of the Sol–Gel Electrochemical Deposition 37412.3 Manipulation of the Sol–Gel Electrochemical Deposition 37912.3.1 Effect of Deposition Parameters 37912.3.2 Electrochemical Deposition of Nanostructured Silica Thin Films 38312.3.3 Selective Electrochemical Deposition on Patterns 38512.3.4 Local Electrochemical Deposition of Sol–Gel Films by Scanning Electrochemical Microscopy 38612.4 Electrochemical Codeposition of Sol–Gel-Based Hybrid and Composite Films 38812.4.1 Electrodeposition of Sol–Gel-Based Hybrid Films 38912.4.2 Electrodeposition of Sol–Gel-Based Composite Films 39012.5 Applications of Electrochemically Deposited Sol–Gel Films 39412.5.1 Corrosion Protection and Adhesion Promotion 39412.5.2 Electrochemical Sensors 39712.5.3 Biocomposite Films 40012.5.4 Other Applications 40512.6 Summary 408Abbreviations for Silanes 409Acknowledgments 410References 41013 Nanofibers and Nanotubes 415Il-Doo Kim and Seon-Jin Choi13.1 Introduction 41513.2 Nanofibers 41513.2.1 Electrospinning Process 41613.2.2 Polymer Nanofibers 41713.2.3 Metal Nanofibers 41913.2.4 Metal Oxide Nanofibers 42113.2.5 Multicomposite Nanofibers 42413.2.6 Graphene-Functionalized Nanofibers 42613.3 Nanotubes 42713.3.1 Direct Synthetic Methods of Nanotubes 42713.3.1.1 Hydrothermal Synthetic Routes 42713.3.1.2 Electrochemical Synthetic Routes 42813.3.1.3 Electrospinning Routes 42813.3.2 Indirect Synthetic Methods of Nanotubes 43113.3.2.1 AAO Templating Routes 43113.3.2.2 Inorganic Layer Templating Routes 43213.3.2.3 Polymer Templating Routes 43413.3.2.4 Electrospun Nanofiber Templating Route 43613.4 Summary and Future Perspectives 439References 43914 Nanoarchitectures by Sol–Gel from Silica and Silicate Building Blocks 443Pîlar Aranda, Carolina Belver, and Eduardo Ruiz-Hitzky14.1 Introduction 44314.2 Porous Clay Nanoarchitectures Using Sol–Gel Approaches 44414.3 Porous Nanoarchitectures from Delaminated Clays 45014.4 Fibrous Silicates as Building Blocks in Sol–Gel Nanoarchitectures Derived from Clays 45714.5 Conclusion 464Acknowledgments 465References 46515 Sol–Gel for Metal Organic Frameworks (MOFs) 471Kang Liang, Raffaele Ricco, Julien Reboul, Shuhei Furukawa, and Paolo Falcaro15.1 Introduction 47115.2 Design and Synthetic Strategies of MOF–Sol–Gel-Based Structures 47215.2.1 MOFs Hosting Sol–Gel-Based Structures 47215.2.2 Surface Chemical Functionalization of Sol–Gel Materials and Ceramics for MOF Technology 47515.2.2.1 Nano/Microparticles 47515.2.2.2 Thin Films 47615.2.2.3 Membranes and Monoliths 47715.2.3 Engineered Ceramics and Hybrid Materials for Controlled MOF Nucleation and Growth 47815.2.3.1 Nano/Microparticles 47815.2.3.2 Thin Films and Membranes 47915.2.4 Conversion from Ceramics for the Fabrication of MOFs 48015.3 Conclusion and Remarks 482Acknowledgments 483References 48316 Silica Ionogels and Ionosilicas 487Peter Hesemann, Lydie Viau, and André Vioux16.1 Introduction 48716.2 Ionogels 48816.2.1 Brief Presentation of ILs 48816.2.2 Sol–Gel in Ionic Liquids 48916.2.2.1 Formic Acid Solvolysis Sol–Gel Way 49016.2.2.2 Hydrolysis Sol–Gel Way 49116.2.2.3 Mesoporous Silicas from Ionogels 49216.2.2.4 Particulate Ionogels 49216.2.3 Applications of Ionogels 49316.2.3.1 Conducting Properties of Confined ILs 49316.2.3.2 Hybrid Host Matrices for Ionogel Electrolytes 49416.2.3.3 Ionogel Electrolytes for Lithium Batteries 49516.2.3.4 Proton-Conducting Ionogel Membranes 49516.2.3.5 Ionogel Electrolytes for Solar Cells 49516.2.3.6 Ionogels Incorporating Task-Specific Solutes 49516.2.3.7 Ionogels for Drug Release Systems 49716.3 Ionosilicas 49716.3.1 Definitions 49716.3.1.1 Synthesis of Ionosilicas 49816.3.2 Synthesis of Surface-Functionalized Ionosilicas 49816.3.2.1 Postsynthesis Grafting Reactions 50016.3.2.2 Cocondensation Reactions 50016.3.3 Hybrid Ionosilicas 50416.3.4 Ionic Nanoparticles and Ionic Nanoparticle Networks 50516.3.5 Applications of Ionosilicas 50616.3.5.1 Catalysis 50616.3.5.2 Anion Exchange Reactions 50716.3.5.3 Molecular Recognition 50716.4 Conclusion 508References 50817 Aerogels 519Shanyu Zhao, Marina S. Manic, Francisco Ruiz-Gonzalez, and Matthias M. Koebel17.1 Introduction and Brief History 51917.2 Synthesis and Processing 52117.2.1 Gel Preparation 52117.2.1.1 Silica Gels 52117.2.1.2 Nonsilica Inorganic Oxide Gels 52717.2.1.3 Organic and Biopolymer Gels 52917.2.1.4 Exotic Gels 53417.2.2 Gel Aging and Solvent Exchange 53517.2.2.1 Aging Process 53517.2.2.2 Effect of Solvent Exchange 53617.2.3 Gel Modification and Chemical Functionalization 53717.2.4 Gel Drying 53817.2.4.1 Freeze-Drying 53917.2.4.2 Ambient Pressure Drying 54017.2.4.3 Supercritical Drying 54317.2.4.4 High-Temperature Supercritical Drying 54417.2.4.5 Low-Temperature Supercritical Drying 54517.3 Characterization Methods 54617.3.1 Structural Characterization 54717.3.2 Chemical Characterization 54817.3.3 Thermal Characterization 54917.3.4 Mechanical Characterization 55017.3.5 Optical Characterization 55217.4 Selected Examples and Applications 55317.4.1 Aerogels for Superinsulation 55417.4.1.1 Silica Aerogels 55517.4.1.2 Organic Aerogels 55517.4.2 Aerogels for Catalysis: Chemistry Applications 55617.4.2.1 Silica-Based Aerogel 55617.4.2.2 Alumina-Based Aerogel 55617.4.2.3 Titania-Based Aerogel 55717.4.2.4 Zirconia-Based Aerogel 55717.4.2.5 Carbon Aerogels 55717.4.2.6 Other Mixed Oxides Composite Aerogels 55817.4.3 Aerogels for Supercapacitor and Battery Research 55817.4.4 Aerogels in Space Exploration 55817.4.5 Aerogels for Biomedical Applications 55917.5 Trends, Conclusion, and Outlook 55917.5.1 Small Volume–High Specialization 55917.5.2 Large Volume–High Performance 56017.5.3 Outlook 561References 56218 Ordered Mesoporous Sol–Gel Materials: From Molecular Sieves to Crystal-Like Periodic Mesoporous Organosilicas 575Sílvia C. Nunes, Paulo Almeida, and Verónica de Zea Bermudez18.1 Introduction 57518.2 Synthesis Mechanisms of Periodic Mesoporous Silica Materials 57718.2.1 Liquid Crystal Templating 57818.2.2 Cooperative Self-Assembly 57818.2.3 Evaporation-Induced Self-Assembly Mechanism 57918.2.4 Soft Templating 58018.3 Functionalization of Periodic Mesoporous Silica Materials 58218.3.1 Postsynthetic Grafting 58318.3.2 Direct Synthesis 58318.4 Periodic Mesoporous Organosilicas 58418.4.1 Synthesis Mechanisms 58418.4.2 Multifunctionalization 58618.4.3 Periodic Mesoporous Organosilicas with Amorphous Wall Structure 58718.4.4 Periodic Mesoporous Organosilicas with Crystal-Like Wall Structure 58718.4.5 Functionalization of Crystal-Like Periodic Mesoporous Organosilicas and Figures of Merit 59118.5 Future Trends 595Acknowledgments 596References 59619 Biomimetic Sol–Gel Materials 605Carole Aimé, Thibaud Coradin, and Francisco M. Fernandes19.1 Introduction 60519.2 Natural Sol–Gel Materials 60619.2.1 Biogenic Oxides 60619.2.2 Biochemical Conditions of Silica Formation 60919.2.3 Chemical Features of Biogenic Silica 61019.2.3.1 Silica Deposit in Higher Plants 61019.2.3.2 Diatoms Frustule 61119.2.3.3 Sponges Spicule 61219.2.4 Properties and Applications 61419.2.5 Overview 61719.3 Biomimetic Sol–Gel Chemistry 61819.3.1 Chemical Background from Biosilicification Processes 61819.3.1.1 Silaffins 61819.3.1.2 Silicateins 62019.3.2 Silicatein-Derived Biomimetic Sequences: From Proteins to Amino Acids 62419.3.2.1 Enzymes and Peptides 62419.3.2.2 Rational Design 62519.3.3 Silaffins-Derived Biomimetic Sequences Based on Polyamines 62819.3.3.1 Long-Chain Polyamines: Silica Formation and Morphogenesis Control 62819.3.3.2 Short-Chain Amines 62919.3.3.3 R5 Peptide 63019.3.4 Overview 63019.4 Biohybrid Materials from Bioinspired Mineralization Strategies 63119.4.1 Mineralization of Biomacromolecules 63219.4.1.1 Proteins 63219.4.1.2 Polysaccharides 63519.4.1.3 Complex Coacervates 63619.4.2 Mineralization of Microorganisms 63719.4.3 Materials and Devices Based on Biomimetic and Bioinspired Mineralization 63819.4.4 Overview 64119.5 Conclusions 641References 642Volume Two: Characterization and Properties of Sol-Gel MaterialsPart Three Characterization Techniques for Sol–Gel Materials 65120 Solid-State NMR Characterization of Sol–Gel Materials: Recent Advances 653Florence Babonneau, Christian Bonhomme21 Time-Resolved Small-Angle X-Ray Scattering 673Johan E. ten Elshof, Rogier Besselink, Tomasz M. Stawski, Hessel L. Castricum22 Characterization of Sol–Gel Materials by Optical Spectroscopy Methods 713Rui M. Almeida, Jian Xu23 Properties and Applications of Sol–Gel Materials: Functionalized Porous Amorphous Solids (Monoliths) 745Kazuki Nakanishi24 Sol–Gel Deposition of Ultrathin High-κ Dielectric Films 767An Hardy, Marlies K. Van BaelPart Four Properties 78725 Functional (Meso)Porous Nanostructures 789Andrea Feinle, Nicola Hüsing26 Sol–Gel Magnetic Materials 813Lucía Gutiérrez, Sabino Veintemillas-Verdaguer, Carlos J. Serna, María del Puerto Morales27 Sol–Gel Electroceramic Thin Films 841María Lourdes Calzada28 Organic–Inorganic Hybrids for Lighting 883Vânia Teixeira Freitas, Rute Amorim S. Ferreira, Luis D. Carlos29 Sol–Gel TiO2 Materials and Coatings for Photocatalytic and Multifunctional Applications 911Yolanda Castro, Alicia Durán30 Optical Properties of Luminescent Materials 929Sidney J.L. Ribeiro, Molíria V. dos Santos, Robson R. Silva, Édison Pecoraro, Rogéria R. Gonçalves, José Maurício A. Caiut31 Better Catalysis with Organically Modified Sol–Gel Materials 963David Avnir, Jochanan Blum, Zackaria Nairoukh32 Hierarchically Structured Porous Materials 987Ming-Hui Sun, Li-Hua Chen, Bao-Lian Su33 Structures and Properties of Ordered Nanostructured Oxides and Composite Materials 1031María Luz Martínez Ricci, Sara A. BilmesVolume Three: Application of Sol-Gel MaterialsPart Five Applications 105534 Sol–Gel for Environmentally Green Products 1057Rosaria Ciriminna, Mario Pagliaro, Giovanni Palmisano35 Sol–Gel Materials for Batteries and Fuel Cells 1071Jadra Mosa, Mario Aparicio36 Sol–Gel Materials for Energy Storage 1119Leland Smith, Ryan Maloney, Bruce Dunn37 Sol–Gel Materials for Pigments and Ceramics 1145Guillermo Monrós38 Sol–Gel for Gas Sensing Applications 1173Enrico Della Gaspera, Massimo Guglielmi, Alessandro Martucci39 Reinforced Sol–Gel Silica Coatings 1207Antonio Julio López, Joaquín Rams40 Sol–Gel Optical and Electro-Optical Materials 1239Marcos Zayat, David Almendro, Virginia Vadillo, David Levy41 Luminescent Solar Concentrators and the Ways to Increase Their Efficiencies 1281Renata Reisfeld42 Mesoporous Silica Nanoparticles for Drug Delivery and Controlled Release Applications 1309Montserrat Colilla, Alejandro Baeza, María Vallet-Regí43 Sol–Gel Materials for Biomedical Applications 1345Julian R. Jones44 Self-Healing Coatings for Corrosion Protection of Metals 1371George Kordas, Eleni K. Efthimiadou45 Aerogel Insulation for Building Applications 1385Bjørn Petter Jelle, Ruben Baetens, Arild Gustavsen46 Sol–Gel Nanocomposites for Electrochemical Sensor Applications 1413Pengfei Niu, Martí Gich, César Fernández-Sánchez, Anna RoigIndex 1435
"this is a great set of books......within each chapter there are gems of knowledge." (Chromatographia 2016)