Hoppa till sidans huvudinnehåll

2 199 kr

Beställningsvara. Skickas inom 10-15 vardagar. Fri frakt för medlemmar vid köp för minst 249 kr.


Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov-Hausdorff convergence, and the Keith-Zhong self-improvement theorem for Poincaré inequalities.

Produktinformation

  • Utgivningsdatum2015-02-05
  • Mått157 x 234 x 33 mm
  • Vikt650 g
  • FormatInbunden
  • SpråkEngelska
  • SerieDel 27 i New Mathematical Monographs
  • Antal sidor448
  • FörlagCambridge University Press
  • ISBN9781107092341
Hoppa över listan

Du kanske också är intresserad av