Hoppa till sidans huvudinnehåll

Smoothness Priors Analysis of Time Series

Häftad, Engelska, 1996

AvGenshiro Kitagawa,Will Gersch,G. Kitagawa

1 779 kr

Beställningsvara. Skickas inom 10-15 vardagar. Fri frakt för medlemmar vid köp för minst 249 kr.


Smoothness Priors Analysis of Time Series addresses some of the problems of modeling stationary and nonstationary time series primarily from a Bayesian stochastic regression "smoothness priors" state space point of view. Prior distributions on model coefficients are parametrized by hyperparameters. Maximizing the likelihood of a small number of hyperparameters permits the robust modeling of a time series with relatively complex structure and a very large number of implicitly inferred parameters. The critical statistical ideas in smoothness priors are the likelihood of the Bayesian model and the use of likelihood as a measure of the goodness of fit of the model. The emphasis is on a general state space approach in which the recursive conditional distributions for prediction, filtering, and smoothing are realized using a variety of nonstandard methods including numerical integration, a Gaussian mixture distribution-two filter smoothing formula, and a Monte Carlo "particle-path tracing" method in which the distributions are approximated by many realizations. The methods are applicable for modeling time series with complex structures.

Produktinformation

  • Utgivningsdatum1996-08-09
  • Mått155 x 235 x 16 mm
  • Vikt423 g
  • FormatHäftad
  • SpråkEngelska
  • SerieLecture Notes in Statistics
  • Antal sidor280
  • Upplaga1996
  • FörlagSpringer-Verlag New York Inc.
  • ISBN9780387948195