Smart Textiles
Wearable Nanotechnology
Inbunden, Engelska, 2018
3 189 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Smart Textiles: Wearable Nanotechnology provides a comprehensive presentation of recent advancements in the area of smart nanotextiles giving specific importance to materials and production processes. Different materials, production routes, performance characteristics, application areas and functionalization mechanisms are covered. The book provides a guideline to students, researchers, academicians and technologists who seek novel solutions in the related area by including groundbreaking advancements in different aspects of the diverse smart nanotextiles fields. This ground-breaking book is expected to spark an inspiration to allow future progress in smart nanotextiles research.The diversity of the topics, as well as the expert subject-matter contributors from all over the world representing various disciplines, ensure comprehensiveness and a broad understanding of smart nanotextiles.
Produktinformation
- Utgivningsdatum2018-12-07
- Mått10 x 10 x 10 mm
- Vikt454 g
- FormatInbunden
- SpråkEngelska
- Antal sidor402
- FörlagJohn Wiley & Sons Inc
- ISBN9781119460220
Tillhör följande kategorier
Nazire Yilmaz has obtained her undergraduate and MSc degrees in Textile Engineering from Pamukkale University (PAU) in Turkey, and her PhD degree in Textile Technology Management program from North Carolina State University (NCSU), USA. She has worked as a teaching assistant in NCSU and a research assistant in PAU. She has given courses in textile and biomedical engineering programs in PAU as an associate professor. She has published about 30 research papers in peer-reviewed journals, holds a patent, has directed 4 research projects and serves as a frequent reviewer for prestigious journals.
- Preface xvAcknowledgments xviiSection 1: Introduction 11 Introduction to Smart Nanotextiles 3Nazire Deniz Yilmaz1.1 Introduction 31.1.1 Application Areas of Smart Nanotextiles 71.1.2 Incorporating Smartness into Textiles 81.1.3 Properties of Smart Nanotextiles 91.1.4 Nanotechnology 91.1.5 Nanomaterials 101.2 Nanofibers 111.2.1 Moisture Management 121.2.2 Thermoregulation 131.2.3 Personal Protection 131.2.4 Biomedicine 141.3 Nanosols 141.3.1 Applications of Nanosols 151.4 Responsive Polymers 161.5 Nanowires 181.6 Nanogenerators 191.7 Nanocomposites 211.8 Nanocoating 231.9 Nanofiber Formation 241.10 Nanotechnology Characterization Methods 261.11 Challenges and Future Studies 271.12 Conclusion 29References 29Section 2: Materials for Smart Nanotextiles 392 Nanofibers for Smart Textiles 41Lynn Yuqin Wan2.1 Introduction 412.2 Nanofibers and Their Advantages 422.3 Nanofiber Fabrication Technologies and Electrospinning 462.4 Smart Nanofibers and Their Applications in Textiles 482.4.1 Moisture Management and Waterproof 492.4.2 Thermoregulation 522.4.3 Personal Protection 542.4.4 Wearables and Sensors 572.4.5 Medical Care 592.5 Challenges Facing Electrospinning 602.5.1 Enhancement of Mechanical Properties 602.5.2 Large-Scale Production 612.5.3 Formation of Nanofiber-Based Yarn and Fabric 632.5.2 Other Issues 642.6 Future Outlook 652.6.1 Fabrication Technology 652.6.2 Applications Meet the Needs 672.7 Conclusion 68References 693 Nanosols for Smart Textiles 91Boris Mahltig3.1 Introduction 913.2 Preparation of Nanosols as Coating Agents 933.3 Application on Textiles 953.4 Nanosols and Smart Textiles 963.4.1 Photocatalytic and Light Responsive Materials 963.4.2 Antimicrobial and Bioactive Systems 1013.4.3 Controlled Release Systems 1033.5 Summary 103Acknowledgements 104References 1044 Responsive Polymers for Smart Textiles 111Eri Niiyama, Ailifeire Fulati and Mitsuhiro Ebara4.1 Classification of Stimuli-Responsive Polymers 1114.2 Fiber Fabrication 1134.3 Biomedical Application 1164.3.1 Sensors 1164.3.2 Drug Delivery Systems (DDSs) 1174.3.3 Cell Application 1204.4 Filters 1224.5 Conclusion 123References 1245 Nanowires for Smart Textiles 127Jizhong Song5.1 Introduction 1275.2 Advantages of Nanowires to Smart Textiles 1305.2.1 Balance between Transparency and Conductivity 1305.2.2 High Specific Surface Area 1315.2.3 Direct Charge Transport Path 1315.2.4 Oriented Assembly 1325.3 Various Nanowires for Smart Textiles 1325.3.1 Conductive Nanowires for Smart Textiles 1325.3.1.1 Metal Nanowires for Smart Textiles 1335.3.1.2 Polymer Nanowires for Smart Textiles 1385.3.2 Semiconducting Nanowires for Smart Textiles 1415.3.2.1 Oxide Nanowires for Smart Textiles 1415.3.2.2 Sulfide Nanowires for Smart Textiles 1475.3.2.3 Other Nanowires for Smart Textiles 1505.4 Perspectives on Future Research 152References 1646 Nanogenerators for Smart Textiles 177Xiong Pu, Weiguo Hu and Zhong Lin Wang6.1 Introduction 1776.2 Working Mechanisms of Nanogenerators 1796.2.1 Piezoelectric Nanogenerators 1796.2.2 Triboelectric Nanogenerators 1816.2.3 Theoretical Origin of Nanogenerators – Maxwell’s Displacement Current 1846.3 Progresses of Nanogenerators for Smart Textiles 1866.3.1 Piezoelectric Nanogenerators for Smart Textiles 1876.3.1.1 Fiber-Based PENGs 1876.3.1.2 Textile-Based PENGs 1896.3.2 Triboelectric Nanogenerators for Smart Textiles 1926.3.2.1 Fiber-Based TENGs 1926.3.2.2 Textile-Based TENGs Starting from 1D Yarns/Fibers 1946.3.2.3 Textile-Based TENGs Starting from 2D Fabrics 1976.3.3 Hybrid Nanogenerators for Smart Textiles 2006.3.3.1 Integrating with Energy-Storage Devices 2006.3.3.2 Integrating with Energy-Harvesting Devices 2016.4 Conclusions and Prospects 204References 2057 Nanocomposites for Smart Textiles 211Nazire Deniz Yilmaz7.1 Introduction 2117.2 Classification of Nanocomposites 2137.2.1 Nanocomposites Based on Matrix Types 2147.3 Structure and Properties of Nanocomposites 2157.4 Production Methods of Nanocomposites 2167.5 Nanocomposite Components 2187.5.1 Carbon Nanotubes 2187.5.2 Carbon Nanofiber 2207.5.3 Nanocellulose 2217.5.4 Conducting Polymers 2237.5.5 Nanoparticles 2247.5.6 Nanoclays 2257.5.7 Nanowires 2267.5.8 Others 2277.6 Nanocomposite Forms 2317.6.1 Laminated Nanocomposites 2317.6.2 Nanocomposite Fibers 2317.6.3 Nanocomposite Membranes 2327.6.4 Nanocomposite Coatings 2337.6.5 Nanocomposite Hydrogels 2337.7 Functions of Nanocomposites in Smart Textiles 2347.7.1 Sensors 2347.7.2 Antibacterial Activity 2367.7.3 Defense Applications 2367.7.4 Fire Protection 2367.7.5 Actuators 2367.7.6 Self-Cleaning 2377.7.7 Energy Harvesting 2377.8 Future Outlook 2387.9 Conclusion 239References 2398 Nanocoatings for Smart Textiles 247Esfandiar Pakdel, Jian Fang, Lu Sun and Xungai Wang8.1 Introduction 2478.2 Fabrication Methods of Nanocoatings 2498.2.1 Sol–Gel 2498.3 Sol–Gel Coatings on Textiles 2528.3.1 Self-Cleaning Coatings 2528.3.1.1 Photocatalytic Self-Cleaning Nanocoatings 2528.3.1.2 Self-Cleaning Surface Based on Superhydrophobic Coatings 2598.3.2 Antimicrobial Sol–Gel Nanocoatings 2638.3.3 UV-Protective Nanocoatings 2668.4 Impregnation and Cross-Linking Method 2688.5 Plasma Surface Activation 2718.6 Polymer Nanocomposite Coatings 2748.6.1 Flame-Retardant Coatings 2768.6.2 Thermal Regulating Coatings 2798.6.2.1 Phase Change Materials (PCMs) 2798.6.2.2 Nanowire Composite Coatings 2828.6.3 Conductive Coatings 2868.6.3.1 Carbon-Based Conductive Coating 2878.6.3.2 Metal-Based Conductive Coating 2888.7 Conclusion and Future Prospect 291Acknowledgements 291References 291Section 3: Production Technologies for Smart Nanotextiles 3019 Production Methods of Nanofibers for Smart Textiles 303Rajkishore Nayak9.1 Introduction 3039.2 Electrospinning 3059.2.1 Types of Electrospinning 3069.2.1.1 Solution Electrospinning 3069.2.1.2 Melt Electrospinning 3089.2.2 Use of Electrospinning for Smart Textiles 3139.2.3 Multijets from Single Needle 3179.2.4 Multijets from Multiple Needles 3179.2.5 Multijets from Needleless Systems 3189.2.6 Other Potential Approaches in Electrospinning 3199.2.7 Bubble Electrospinning 3199.2.8 Electroblowing 3209.2.9 Electrospinning by Porous Hollow Tube 3219.2.10 Electrospinning by Microfluidic Manifold 3219.2.11 Roller Electrospinning 3229.3 Other Techniques without Electrostatic Force 3249.3.1 Melt Blowing 3249.3.2 Wet Spinning 3269.3.3 Melt Spinning 3279.3.4 Template Melt Extrusion 3289.3.5 Flash Spinning 3289.3.6 Bicomponent Spinning 3309.3.7 Other Approaches 3319.4 Comparisons of Different Processes 3339.5 Conclusions 337References 33710 Characterization Methods of Nanotechnology-Based Smart Textiles 347Mamatha M. Pillai, R. Senthilkumar, R. Selvakumar and Amitava Bhattacharyya10.1 Introduction 34810.2 Nanomaterial Characterization Using Spectroscopy 35110.2.1 Raman Spectroscopy 35110.2.1.1 Principle 35110.2.1.2 Applications 35210.2.2 Fourier Transform Infrared Spectroscopy 35310.2.2.1 Principle 35310.2.2.2 Applications 35410.2.3 Ultraviolet UV–Vis Spectroscopy 35610.2.3.1 Principle 35610.2.3.2 Applications 35710.3 Nanomaterial Characterization Using Microscopy 35810.3.1 Scanning Electron Microscopy 35810.3.1.1 Principle 35910.3.1.2 Sample Preparation 35910.3.1.3 Applications 36010.3.2 Energy Dispersive X-Ray Analysis 36110.3.2.1 Principle 36110.3.2.2 Applications 36110.3.3 Transmission Electron Microscopy (TEM) 36210.3.3.1 Principle 36210.3.3.2 Sample Preparation 36210.3.3.3 Applications 36310.3.4 Scanning Probe Microscopy (SPM) 36410.3.4.1 Principle 36510.3.4.2 Applications 36610.4 Characterization Using X-Ray 36710.4.1 X-Ray Diffraction 36710.4.1.1 Principle 36710.4.1.2 Applications 36810.4.2 X-Ray Photoelectron Spectroscopy (XPS) 36810.4.2.1 Principle 36910.4.2.2 Applications 36910.5 Particle Size and Zeta Potential Analysis 36910.5.1 Principle 37010.5.2 Applications 37010.6 Biological Characterizations 37110.7 Other Characterization Techniques 37110.8 Conclusions 374References 374Index 379