Del 147 - Studies in Computational Intelligence
Self-Adaptive Heuristics for Evolutionary Computation
Häftad, Engelska, 2010
1 409 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Finns i fler format (1)
Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adaptation. Their self-adaptive mutation control turned out to be exceptionally successful. But nevertheless self-adaptation has not achieved the attention it deserves.This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts.
Produktinformation
- Utgivningsdatum2010-10-28
- Mått155 x 235 x 11 mm
- Vikt306 g
- SpråkEngelska
- SerieStudies in Computational Intelligence
- Antal sidor182
- FörlagSpringer-Verlag Berlin and Heidelberg GmbH & Co. KG
- EAN9783642088780