Satellites for Atmospheric Sciences 1
Meteorology, Climate and Atmospheric Composition
Inbunden, Engelska, 2024
Av Thierry Phulpin, Thierry Phulpin, Didier Renaut, Herve Roquet, Claude Camy-Peyret
2 349 kr
Produktinformation
- Utgivningsdatum2024-01-11
- Mått156 x 234 x 22 mm
- Vikt898 g
- SpråkEngelska
- Antal sidor384
- FörlagISTE Ltd
- EAN9781789451405
Tillhör följande kategorier
Thierry Phulpin is a senior expert in space missions for atmospheric sciences. He has been a researcher at Météo-France, Lannion, then program scientist on missions for meteorology (IASI, IASI-NG) and air quality (TRAQ, 3MI) at the CNES, Toulouse.Didier Renaut is a meteorological engineer, now retired. He made his career at Météo-France, Paris, then at the CNES, Paris, where he was in charge of meteorological and climate programs. He has also worked in the field of scientific publishing.Hervé Roquet is a meteorological engineer at Météo-France. After several years at the Space Meteorology Center of Météo-France in Lannion, he joined the Higher Education and Research Department of Météo-France in Saint-Mandé in 2017, where he is the deputy director.Claude Camy-Peyret is currently emeritus scientist at Institut Pierre Simon Laplace, Paris. He is also a retired research director at the CNRS, Paris. From 1996 to 2008 he was the head of LPMAA at Sorbonne Université, Paris.
- Acknowledgments xiList of Acronyms xiiiIntroduction xxxiThierry PHULPINPart 1 Satellite Observation of the Earth's Atmosphere: International Cooperation 1Chapter 1 History of Meteorological Satellites 3Sylvain LE MOAL1.1 The beginnings of remote sensing and the conquest of space 31.2 It all began with Tiros-1, the first meteorological satellite 61.3 American meteorological satellites 81.3.1 Polar-orbiting satellites 81.3.2 Geostationary satellites 131.4 Russian meteorological satellites 171.4.1 Polar-orbiting satellites 171.4.2 Geostationary satellites 201.5 European meteorological satellites 211.5.1 The Meteosat saga 211.5.2 46 years after Tiros-1, MetOp enters the scene 281.6 Elsewhere 291.6.1 Japan 291.6.2 China 311.6.3 Korea 331.6.4 India 331.7 References 351.8 Websites 36Chapter 2 Contribution of the National Oceanic and Atmospheric Administration (NOAA, USA) Meteorological Satellites Program: An Overview 37Sid-Ahmed BOUKABARA, Mitch GOLDBERG, Timothy J SCHMIT, Andrew HEIDINGER, Satya KALLURI, Patricia WEIR, Frank GALLAGHER, David SPENCER and Ross N HOFFMAN2.1 NOAA Satellite Program: historical background 382.1.1 Origins of NASA-NOAA Polar and Geostationary Environmental Satellite Programs 382.1.2 Low Earth orbit (LEO) missions 402.1.3 Geostationary Earth orbit (GEO) missions 432.2 NOAA Current Space Constellation 452.2.1 The NOAA Joint Polar Satellite System (JPSS) Program 452.2.2 GOES-R series 492.2.3 Collaborative programs 512.3 Applications 522.4 Looking ahead: designing the next-generation architecture 572.4.1 Factors impacting the NOAA strategy 572.4.2 Next-generation NOAA space architecture 592.5 Summary 622.6 Acknowledgments 622.7 References 63Chapter 3 The Role of the National Aeronautics and Space Administration (NASA, USA) 67Michael SEABLOM3.1 The beginnings of the National Aeronautics and Space Administration (NASA) 673.2 The Nimbus Era (1964–1979) 683.3 The Earth Observing System (1982–2004) 723.4 The "A-train" (2004–present) 813.5 Decadal surveys and technological disruption (2007–present) 843.6 References 87Chapter 4 The Role of the European Space Agency (ESA) 89Paul INGMANN4.1 Missions in geostationary Earth orbit (GEO) – ESA's Start in Earth Observation 894.2 Missions in low Earth orbit (LEO) 924.2.1 ERS 924.2.2 Envisat 944.2.3 MetOp 954.2.4 The Earth Explorer and Earth Watch Concept 964.3 ESA's Climate Change Initiative (CCI) 1134.4 References 114Chapter 5 The Role of EUMETSAT (Europe) 117François MONTAGNER5.1 Introduction: What does EUMETSAT do? 1175.1.1 Public service value of weather satellites 1175.1.2 EUMETSAT, a key player in Europe 1175.1.3 Climate and environment 1185.2 The organization 1185.2.1 First steps 1185.2.2 Stability and growth 1205.2.3 Government 1205.2.4 European pooling: EUMETSAT, ECMWF and EUMETNET 1215.2.5 Global pooling by the World Meteorological Organization (WMO) 1225.3 Geostationary weather satellites: from synoptic to regional zoom 1225.3.1 Meteosat first generation 1225.3.2 Meteosat second generation 1255.3.3 Agility of geostationary missions 1275.3.4 Stabilization by rotation or on three axes: system aspects 1285.3.5 Meteosat Third Generation 1285.4 MetOp satellites, the first source for numerical weather forecasting 1305.4.1 Synergy of observations 1315.4.2 Continuity and innovation 1325.4.3 The second generation of the European Polar System 1335.4.4 Scale economies 1345.4.5 Cooperation regarding the polar orbit 1355.5 Weather perspective and innovation 1365.6 Climate 1375.7 EUMETSAT and Copernicus 1375.7.1 A convenient partnership 1375.7.2 EUMETSAT and the Copernicus services 1385.7.3 Continuity and expansion: the challenge of CO2 1395.8 References 139Chapter 6 The Role of the National Center for Space Studies (CNES, France) 141Carole DENIEL and Pierre TABARY6.1 The CNES and its scientific missions 1416.2 Greenhouse gases and composition of the atmosphere 1426.2.1 Merlin, a political French–German will 1436.2.2 Microcarb, a strategic and continuous project… 1446.2.3 TRAQ, Geotrope, Mageaq, promising projects but no future developments… 1466.3 IASI and IASI-NG, for meteorology, atmospheric composition and climate 1476.4 Physical properties of the atmosphere 1516.4.1 Aerosols and clouds: PARASOL, CALIPSO and the A-Train 1526.4.2 Next: 3MI and EarthCare 1546.4.3 A study in the longer term: ACCP 1556.4.4 Megha-Tropiques and rainfall 1566.5 Additional facilities and means of observation 1576.6 The role of numerical models 1596.7 References 160Chapter 7 A Coordinated International Effort 163Jérôme LAFEUILLE7.1 The challenges of international coordination 1637.2 Multilateral coordination instances 1657.2.1 Overview 1657.2.2 The World Weather Watch and its space component 1657.2.3 CGMS 1697.2.4 CEOS 1727.3 The benefits of coordination 1747.3.1 Mission continuity 1747.3.2 Intercalibration of instruments in orbit 1757.3.3 The climate observation strategy 1777.3.4 Use of the radio frequency spectrum 1787.3.5 Access to data 1797.3.6 Bilateral cooperation 1817.4 An extended community of space operators 1827.4.1 A growing number of national operational agencies 1827.4.2 The emergence of the private sector 1837.5 Conclusion 1847.6 References 184Part 2 The Physical Basis 187Chapter 8 Satellite Orbits for Atmospheric Observation 189Michel CAPDEROU8.1 Introduction 1898.2 Preliminaries 1908.3 Satellites in low Earth orbit 1928.3.1 Orbital characteristics 1928.3.2 Sun-synchronous satellites 1948.3.3 Non-Sun-synchronous satellites 2008.3.4 Recurrent satellites 2008.3.5 Spatio-temporal sampling 2028.3.6 Collaboration with LEO satellites 2088.4 Satellites in geostationary orbits 2098.4.1 Orbit characteristics 2098.4.2 Observation conditions 2108.5 Other types of orbits used 2118.5.1 Satellites in HEO orbits 2118.5.2 Uses of satellites in MEO orbit 2128.6 References 213Chapter 9 Measurement Physics 215Clémence PIERANGELO, Fatima KARBOU and Claude CAMY-PEYRET9.1 Physical principles of observation of the atmosphere by satellite 2159.1.1 Basic principles of remote sensing 2159.1.2 Absorption, scattering, emission 2189.1.3 Spectroscopy of gaseous species 2199.1.4 Optical properties of particles 2209.1.5 At the surface: reflection and emission 2229.1.6 Spectroscopic parameter database 2249.1.7 Aerosol and cloud databases 2249.1.8 Atmospheric profile databases 2249.1.9 Surface databases 2259.2 Radiative transfer equation 2259.2.1 Differential RTE 2259.2.2 Integration of the RTE 2269.2.3 Polarized RTE 2289.2.4 Recent advances for radiative transfer 2299.2.5 RTE analysis and implications for space-based remote sensing of the atmosphere 2299.2.6 Example: the 4A/OP source code 2329.3 Passive optical sensors: radiometers and spectrometers 2339.3.1 Radiometers 2349.3.2 Spectrometers 2359.3.3 Level 1 processing 2389.3.4 The sensors of the future 2389.4 Active optical sensors: lidars 2399.4.1 Lidar principle 2399.4.2 Lidar equation 2409.4.3 Different types of spatial Lidar 2409.4.4 Comparison of optical sensors 2469.5 Passive and active microwave sensors 2479.5.1 Specificities of microwave sensors 2479.5.2 Passive microwave sensors 2479.5.3 Active microwave sensors 2499.5.4 List of microwave instruments 2499.6 References 249Chapter 10 The Inverse Problem and Techniques for Atmospheric Variable Retrieval 253Clémence PIERANGELO10.1 General remarks on the inversion of atmospheric parameters 25310.2 Matrix expression of the direct problem 25410.2.1 Matrix expression 25410.2.2 Linearization of the problem 25510.2.3 Typical dimensions of the problem 25510.3 Solutions to the inverse problem 25610.3.1 Least squares 25610.3.2 Probabilistic methods 25810.3.3 Methods with pre-calculated bases 26210.4 References 265Appendices 267Appendix 1 269Claude CAMY-PEYRETAppendix 2 277Claude CAMY-PEYRETAppendix 3 287Appendix 4 301Glossary 307List of Authors 321Index 325Summary of Volume 2 329