Rubber-Clay Nanocomposites
Science, Technology, and Applications
Inbunden, Engelska, 2011
2 459 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.The one-stop resource for rubber-clay nanocomposite information The first comprehensive, single-volume book to compile all the most important data on rubber-clay nanocomposites in one place, Rubber-Clay Nanocomposites: Science, Technology, and Applications reviews rubber-clay nanocomposites in an easy-to-reference format designed for R&D professionals.Including contributions from experts from North America, Europe, and Asia, the book explores the properties of compounds with rubber-clay nanocomposites, including their rheology, curing kinetics, mechanical properties, and many others.Rubber-clay nanocomposites are of growing interest to the scientific and technological community, and have been shown to improve rubber compound reinforcement and impermeability. These natural mineral fillers are of potential interest for large-scale applications and are already making an impact in several major fields. Packed with valuable information about the synthesis, processing, and mechanics of these reinforced rubbers, the book covers assorted rubber-clay nanocomposites applications, such as in automotive tires and as polymer fillers.Promoting common knowledge and interpretation of the most important aspects of rubber-clay nanocomposites, and clarifying the main results achieved in the field of rubbers and crosslinked rubbers—something not covered in other books in the field—Rubber-Clay Nanocomposites helps scientists understand morphology, vulcanization, permeability, processing methods, and characterization factors quickly and easily.
Produktinformation
- Utgivningsdatum2011-12-16
- Mått164 x 244 x 38 mm
- Vikt1 030 g
- FormatInbunden
- SpråkEngelska
- Antal sidor632
- FörlagJohn Wiley & Sons Inc
- ISBN9780470562109
Tillhör följande kategorier
Maurizio Galimberti is a Professor of Chemistry for Rubber and Composite Materials Technology at Milan Polytechnic, Milan, Italy, and a Visiting Professor at University of Insubria, Como, Italy. He is the former president and a current board member of the Italian Association of Macromolecules; has published over seventy scientific works in international books and journals; and is the author of more than forty patents.
- PREFACE xvii CONTRIBUTORS xxiSECTION I CLAYS FOR NANOCOMPOSITES1 CLAYS AND CLAY MINERALS 31.1 What’s in a Name / 31.2 Multiscale Organization of Clay Minerals / 61.2.1 Dispersion Versus Aggregation / 61.2.2 Delamination/Exfoliation Versus Stacking / 61.3 Intimate Organization of the Layer / 81.3.1 Cationic and Neutral Clay Minerals / 81.3.2 Anionic Clay Minerals (O) / 211.4 Most Relevant Physicochemical Properties of Clay Mineral / 221.4.1 Surface Area and Porosity / 221.4.2 Chemical Landscape of the Clay Surfaces / 241.4.3 Cation (and Anion) Exchange Capacity / 241.4.4 Intercalation and Confinement in the Interlayer Space / 271.4.5 Swelling / 301.4.6 Rheology / 311.5 Availability of Natural Clays and Synthetic Clay Minerals / 331.6 Clays and (Modified) Clay Minerals as Fillers / 35Acknowledgment / 37References / 372 ORGANOPHILIC CLAY MINERALS 452.1 Organophilicity/Lipophilicity and the Hydrophilic/Lipophilic Balance (HLB) / 452.2 From Clays to Organoclays in Polymer Technology / 472.3 Methods of Organoclay Synthesis / 492.3.1 Cation Exchange from Solutions / 492.3.2 Solid-State Intercalation / 582.3.3 Grafting from Solution / 592.3.4 Direct Synthesis of Grafted Organoclays / 622.3.5 Postsynthesis Modifications of Organoclays: The “PCH” / 642.3.6 An Overview of Commercial Organoclays / 642.3.7 One-Pot CPN Formation / 662.4 Other Types of Clay Modifications for Clay-Based Nanomaterials / 662.4.1 Organo-Pillared Clays / 662.4.2 Plasma-Treated Clays / 692.5 Fine-Tuning of Organoclays Properties / 692.5.1 Maximizing the Dispersion of the Filler: Effectof Surfactant/CEC Ratio / 692.5.2 Improving Thermal Stability / 702.5.3 Chemical Treatments / 712.5.4 Physical Treatments (Freeze-Drying, Sonication, Microwave) / 712.6 Some Introductory Reflections on Organoclay Polymer Nanocomposites / 72References / 753 INDUSTRIAL TREATMENTS AND MODIFICATION OF CLAY MINERALS 873.1 Bentonite: From Mine to Plant / 873.1.1 A Largely Diffused Clay / 873.1.2 Geological Occurrence / 893.1.3 Mining / 893.2 Processing of Bentonite / 903.2.1 Modification of Bentonite Properties / 903.2.2 Processing Technologies / 913.3 Purification of Clay / 933.3.1 Influence of Clay Concentration / 943.3.2 Influence of Swelling Time / 943.3.3 Influence of Temperature / 953.4 Reaction of Clay with Organic Substances / 973.5 Particle Size Modification / 99References / 994 ALKYLAMMONIUM CHAINS ON LAYERED CLAY MINERAL SURFACES 1014.1 Structure and Dynamics / 1014.1.1 Packing Density and Self-Assembly / 1024.1.2 Dynamics and Diffusion at the Clay–Surfactant Interface / 1104.1.3 Utility of Molecular Simulation to Obtain Molecular-Level Insight / 1114.2 Thermal Properties / 1114.2.1 Reversible Melting Transitions of Alkyl Chains in the Interlayer / 1114.2.2 Solvent Evaporation and Thermal Elimination of Alkyl Surfactants / 1134.3 Layer Separation and Miscibility with Polymers / 1154.3.1 Thermodynamics Model for Exfoliation in Polymer Matrices / 1154.3.2 Cleavage Energy / 1164.3.3 Surface Energy / 1214.4 Mechanical Properties of Clay Minerals / 121References / 1235 CHEMISTRY OF RUBBER–ORGANOCLAY NANOCOMPOSITES 1275.1 Introduction / 1275.2 Organic Cation Decomposition in Salts, Organoclays and Polymer Nanocomposites / 1285.2.1 Experimental Techniques / 1285.2.2 Decomposition of Organoclays Versus Precursor Organic Cation Salts / 1335.3 Mechanism of Thermal Decomposition of Organoclays / 1355.4 Role of Organic Cations in Organoclays as Rubber Vulcanization Activators / 137References / 141SECTION II PREPARATION AND CHARACTERIZATION OF RUBBER–CLAY NANOCOMPOSITES6 PROCESSING METHODS FOR THE PREPARATION OF RUBBER–CLAY NANOCOMPOSITES 1476.1 Introduction / 1476.2 Latex Compounding Method / 1486.2.1 Mechanism / 1486.2.2 Influencing Factors / 1496.3 Melt Compounding / 1576.3.1 Mechanism / 1576.3.2 Influencing Factors / 1606.4 Solution Intercalation and In Situ Polymerization Intercalation / 1706.5 Summary and Prospect / 170Acknowledgment / 171References / 1717 MORPHOLOGY OF RUBBER–CLAY NANOCOMPOSITES 1817.1 Introduction / 1817.1.1 Focus, Objective and Structure of Chapter 7 / 1817.1.2 X-Ray Diffraction Analysis for the Investigation of RCN / 1827.2 Background for the Review of RCN Morphology / 1827.2.1 Cationic Clays Used for the Preparation of Rubber Nanocomposites / 1827.2.2 Multiscale Organization of Layered Clays / 1847.2.3 Clay Distribution and Dispersion / 1847.2.4 Clay Modification: Intercalation of Low Molecular Mass Substances / 1847.2.5 Types of Polymer–Clay Composites / 1847.2.6 Specific Literature on RCN / 1867.3 Rubber–Clay Nanocomposites with Pristine Clays / 1867.3.1 Rubber Nanocomposites with Cationic Clays / 1877.3.2 In a Nutshell / 1877.3.3 Distribution and Dispersion of a Pristine Clay in a Rubber Matrix / 1907.3.4 Organization of Aggregated Pristine Clays / 1947.4 Rubber–Clay Nanocomposites with Clays Modified with Primary Alkenylamines / 1977.4.1 In a Nutshell / 1977.4.2 Composites with Montmorillonite and Bentonite / 1987.4.3 Composites with Fluorohectorite Modified with a Primary Alkenylamine / 2027.5 Rubber–Clay Nanocomposites with Clays Modified with an Ammonium Cation Having three Methyls and One Long-Chain Alkenyl Substituents / 2067.5.1 In a Nutshell / 2067.5.2 Composites with Montmorillonite and Bentonite / 2077.6 Rubber–Clay Nanocomposites with Montmorillonite Modified with Two Substituents Larger Than Methyl / 2127.6.1 In a Nutshell / 2127.6.2 Hydrogenated Tallow and Benzyl Groups as Ammonium Cation Substituents / 2137.6.3 Hydrogenated Tallow and Ethylhexyl Groups as Ammonium Cation Substituents / 2137.6.4 Other Long- and Short-Chain Alkenyl Groups as Ammonium Cation Substituents / 2157.7 Rubber Composites with Montmorillonite Modified with an Ammonium Cation Containing a Polar Group / 2157.7.1 In a Nutshell / 2177.7.2 Composites with Diene Rubbers / 2177.8 Rubber Nanocomposites with Montmorillonite Modified with an Ammonium Cation Containing Two Long-Chain Alkenyl Substituents / 2197.8.1 In a Nutshell / 2207.8.2 Composites with Two Talloyl Groups as Ammonium Cation Substituents / 2207.9 Proposed Mechanisms for the Formation of Rubber–Clay Nanocomposites / 2287.9.1 Two Mechanisms for the Formation of an Exfoliated Clay / 2287.9.2 Two Mechanisms for the Formation of an Intercalated Organoclay / 2287.9.3 Intercalation of Polymer Chains in the Interlayer Space / 2297.9.4 Intercalation of Low Molecular Mass Substances in the Interlayer Space / 230Abbreviations / 232Acknowledgment / 233References / 2338 RHEOLOGY OF RUBBER–CLAY NANOCOMPOSITES 2418.1 Introduction / 2418.2 Rheological Behavior of Rubber–Clay Nanocomposites / 2428.2.1 Natural Rubber (NR), Epoxidized Natural Rubber (ENR) and Polyisoprene Rubber (IR)–Clay Nanocomposites / 2438.2.2 Styrene–Butadiene Rubber (SBR)–Clay Nanocomposites / 2468.2.3 Polybutadiene Rubber (BR)–Clay Nanocomposites / 2478.2.4 Acrylonitrile Butadiene Rubber (NBR)–Clay Nanocomposites / 2508.2.5 Ethylene Propylene Rubber–Clay Nanocomposites / 2538.2.6 Fluoroelastomer–Clay Nanocomposites / 2548.2.7 Poly(isobutylene-co-para-methylstyrene) (BIMS) Rubber–Clay Nanocomposites / 2578.2.8 Poly(ethylene-co-vinylacetate) (EVA) Rubber–Clay Nanocomposites / 2578.2.9 Polyepichlorohydrin Rubber–Clay Nanocomposites / 2598.2.10 Thermoplastic Polyurethane (TPU)–Clay Nanocomposites / 2618.2.11 Styrene–Ethylene–Butylene–Styrene (SEBS) Block Copolymer–Clay Nanocomposites / 2628.3 General Remarks on Rheology of Rubber–Clay Nanocomposites / 2638.4 Overview of Rheological Theories of Polymer–Clay Nanocomposites / 2698.5 Conclusion and Outlook / 270References / 2719 VULCANIZATION CHARACTERISTICS AND CURING KINETIC OF RUBBER–ORGANOCLAY NANOCOMPOSITES 2759.1 Introduction / 2759.2 Vulcanization Reaction / 2769.3 Rubber Cross-Linking Systems / 2789.3.1 Sulfur Vulcanization / 2789.3.2 Peroxide Vulcanization / 2829.4 The Role of Organoclay on Vulcanization Reaction / 2839.4.1 Influence of Organoclay Structural Characteristics on Rubber Vulcanization / 2889.5 Vulcanization Kinetics of Rubber–Organoclay Nanocomposites / 2909.6 Conclusions / 297References / 29810 MECHANICAL AND FRACTURE MECHANICS PROPERTIES OF RUBBER COMPOSITIONS WITH REINFORCING COMPONENTS 30510.1 Introduction / 30510.2 Testing of Viscoelastic and Mechanical Properties of Reinforced Elastomeric Materials / 30710.2.1 Dynamic–Mechanical Analysis / 30710.2.2 Tensile Testing / 31010.2.3 Assessment of Toughness Behavior under Impact-Like Loading Conditions / 31310.2.4 Hardness Testing / 31510.2.5 Special Methods / 31610.3 Characterization of the Fracture Behavior of Elastomers / 31910.3.1 Fracture Mechanics Concepts / 31910.3.2 Experimental Methods / 32110.4 Mechanism of Reinforcement in Rubber–Clay Composites / 32810.5 Theories and Modeling of Reinforcement / 333Acknowledgment / 336References / 33611 PERMEABILITY OF RUBBER COMPOSITIONS CONTAINING CLAY 34311.1 Introduction / 34311.1.1 Butyl Rubbers as Nanocomposite Base Elastomers / 34311.1.2 Measurement of Tire Innerliner Compound Permeability / 34511.1.3 Further Improvement in Tire Permeability / 34611.2 Nanocomposites / 34611.3 Preparation of Elastomer Nanocomposites / 35211.4 Temperature and Compound Permeability / 35211.5 Vulcanization of Nanocomposite Compounds and Permeability / 35611.6 Thermodynamics and BIMSM Montmorillonite Nanocomposites / 35811.7 Nanocomposites and Tire Performance / 36211.8 Summary / 364References / 364SECTION III COMPOUNDS WITH RUBBER–CLAY NANOCOMPOSITES12 RUBBER–CLAY NANOCOMPOSITES BASED ON APOLAR DIENE RUBBER 36912.1 Introduction / 36912.2 Preparation Methods / 37112.2.1 Latex / 37112.2.2 Solution / 37312.2.3 Melt Blending / 37412.3 Cure Characteristics / 37712.4 Clay Dispersion / 37912.4.1 Detection / 38012.4.2 Characterization / 38312.5 Properties / 38712.5.1 Mechanical (Dynamic–Mechanical) / 38712.5.2 Friction/Wear/Abrasion / 39212.5.3 Barrier / 39312.5.4 Fire Resistance / 39612.5.5 Others / 39712.6 Applications and Future Trends / 398Acknowledgment / 399References / 39913 RUBBER–CLAY NANOCOMPOSITES BASED ON NITRILERUBBER 40913.1 Introduction / 40913.2 Preparation Methods and ClayDispersion / 41013.2.1 Solution / 41013.2.2 Latex / 41113.2.3 Melt Blending / 41213.3 Cure Characteristics / 41413.4 Properties / 41613.4.1 Mechanical (Dynamic–Mechanical) / 41613.4.2 Friction/Wear / 42113.4.3 Barrier / 42313.4.4 Fire Resistance / 42413.4.5 Others / 42513.5 Outlook / 425Acknowledgment / 426References / 426xii CONTENTSFOR SCREEN VIEWING IN DART ONLY14 RUBBER–CLAY NANOCOMPOSITES BASED ON BUTYL ANDHALOBUTYL RUBBERS 43114.1 Introduction / 43114.1.1 Butyl Rubber: Key Propertiesand Applications / 43114.1.2 Butyl Rubber–Clay Nanocomposites / 43314.2 Types of Clays Useful in Butyl Rubber–ClayNanocomposites / 43514.2.1 Montmorillonite Clays / 43514.2.2 Hydrotalcite Clays / 43514.2.3 High Aspect Ratio Talc Fillers / 43614.2.4 Other Clays / 43714.3 Compatibilizer Systems for Butyl Rubber–ClayNanocomposites / 43814.3.1 Surfactants and Swelling Agents / 43914.3.2 Butyl Rubber Ionomers / 43914.3.3 Maleic Anhydride-Grafted Polymers / 44314.3.4 Low Molecular Weight Polymers and Resins / 44414.4 Methods of Preparation of Butyl Rubber–Clay Nanocomposites / 44414.4.1 Melt Method / 44514.4.2 Solution Method / 44514.4.3 Latex Method / 44714.4.4 In Situ Polymerization / 44814.5 Properties and Applications of Butyl Rubber–Clay Nanocomposites / 44914.5.1 Air Barrier Properties / 44914.5.2 Reinforcement Properties / 45214.5.3 Vulcanization Properties / 45414.5.4 Adhesion Properties / 45614.5.5 Other Properties / 45714.6 Conclusions / 457References / 45815 RUBBER–CLAY NANOCOMPOSITES BASED ON OLEFINIC RUBBERS (EPM, EPDM) 46515.1 Introduction / 46515.2 Types of Clay Minerals Useful in EPM–, EPDM–Clay Nanocomposites / 46615.3 Compatibilizer Systems for Olefinic Rubber–Clay Nanocomposites / 46715.4 Preparation of EPDM–Clay Nanocomposites by an In Situ Intercalation Method / 46915.5 Characteristics of EPDM–Clay Nanocomposites / 47315.5.1 Gas Barrier Properties of EPDM–Clay Nanocomposites / 47315.5.2 Rheological Properties of EPDM–Clay Nanocomposites / 47415.5.3 Stability of EPDM–Clay Nanocomposites / 47515.5.4 Swelling Properties of EPDM–Clay Nanocomposites / 47515.5.5 Mechanical Properties of EPDM–Clay Nanocomposites / 47615.6 Preparation and Characteristics of EPM–Clay Nanocomposites / 47915.6.1 Tensile Properties of EPM–CNs / 48015.6.2 Temperature Dependence of Dynamic Storage Moduli of EPM–CNs / 48115.6.3 Creep Properties of EPM–CNs / 48215.6.4 Swelling Properties of EPM–CNs / 48315.7 Conclusions / 486References / 48616 RUBBER–CLAY NANOCOMPOSITES BASED ON THERMOPLASTIC ELASTOMERS 48916.1 Introduction / 48916.2 Selection of Materials / 49116.2.1 Polymer Resin / 49116.2.2 Nanoparticles / 49316.3 Experimental / 49316.3.1 Processing of Thermoplastic Elastomer Nanocomposites / 49316.3.2 Morphological Characterization / 49416.3.3 Thermal Properties Characterization / 49516.3.4 Flammability Properties Characterization / 49516.3.5 Thermophysical Properties Characterization / 49616.4 Numerical / 49716.4.1 Modeling of Decomposition Kinetics / 49716.5 Discussion of Results / 50116.5.1 Nanoparticle Dispersion / 50116.5.2 Thermal Properties / 50316.5.3 Flammability Properties / 50716.5.4 Microstructures of Posttest Specimens / 51116.5.5 Thermophysical Properties / 51216.5.6 Kinetic Parameters / 51316.6 Summary and Conclusions / 51616.7 Nomenclature / 517Acknowledgments / 518References / 518SECTION IV APPLICATIONS OF RUBBER–CLAY NANOCOMPOSITES17 AUTOMOTIVE APPLICATIONS OF RUBBER–CLAY NANOCOMPOSITES 52517.1 Introduction / 52517.2 Automotive Application of Rubber / 52617.2.1 Automotive Hose / 52717.2.2 Automotive Seals / 52817.2.3 Automotive Belts / 52917.2.4 Automotive Tubing / 52917.2.5 Door Seal and Window Channels / 52917.2.6 Diaphragms and Rubber Boots / 52917.2.7 Tire, Tube and Flap / 52917.2.8 Other Miscellaneous Rubber Parts / 53117.3 Prime Requirement of Different Elastomeric Auto Components from Application Point of View / 53117.4 Elastomeric Nanocomposites and Rubber Industry / 53117.5 Superiority of Clay/Clay Mineral in Comparison to Other Nanofillers / 53417.6 Organo-Modified Clay/Clay Minerals / 53417.7 Scope of Application of Elastomeric Nanocomposites in Automotive Industry / 53417.7.1 Lighter Weight and Balanced Mechanical Property / 53517.7.2 Barrier Property or Air Retention Property / 53817.7.3 Aging and Ozone Resistance / 53917.7.4 Solvent Resistance / 54117.7.5 Better Processability / 54217.7.6 Elastomeric Polyurethane–Organoclay Nanocomposites / 54417.7.7 Use of Organoclay Nanocomposites in Tire / 54517.8 Disadvantages of Use of Organoclay Elastomeric Nanocomposites in Automotive Industry / 54817.9 Conclusion / 549Acknowledgment / 550References / 55018 NONAUTOMOTIVE APPLICATIONS OF RUBBER–CLAY NANOCOMPOSITES 55718.1 Water-Based Nanocomposites / 55718.1.1 Barrier Properties / 55718.1.2 Comparison with Thermally Processed Elastomers / 56618.2 Applications / 56618.2.1 Sports Balls and Other Pneumatic Applications / 56618.2.2 Breakthrough Time Applications / 571References / 573INDEX 575