Del 12

Robust Subspace Estimation Using Low-Rank Optimization

Theory and Applications

Inbunden, Engelska, 2014

Av Omar Oreifej, Mubarak Shah

739 kr

Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Finns i fler format (1)


Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book, the authors discuss fundamental formulations and extensions for low-rank optimization-based subspace estimation and representation. By minimizing the rank of the matrix containing observations drawn from images, the authors demonstrate  how to solve four fundamental computer vision problems, including video denosing, background subtraction, motion estimation, and activity recognition.

Produktinformation

  • Utgivningsdatum2014-04-03
  • Mått155 x 235 x 13 mm
  • Vikt354 g
  • FormatInbunden
  • SpråkEngelska
  • SerieInternational Series in Video Computing
  • Antal sidor114
  • Upplaga2014
  • FörlagSpringer International Publishing AG
  • ISBN9783319041834

Tillhör följande kategorier