Del 223 - Wiley Series in Microwave and Optical Engineering
RF and Microwave Transmitter Design
Inbunden, Engelska, 2011
Av Andrei Grebennikov, Ireland)) Grebennikov, Andrei (Infineon Technologies AG, Germany (M/A-COM Eurotec Operations
2 819 kr
Produktinformation
- Utgivningsdatum2011-06-24
- Mått185 x 262 x 49 mm
- Vikt1 751 g
- FormatInbunden
- SpråkEngelska
- SerieWiley Series in Microwave and Optical Engineering
- Antal sidor848
- FörlagJohn Wiley & Sons Inc
- ISBN9780470520994
Tillhör följande kategorier
Andrei Grebennikov is a Member of the Technical Staff at Bell Laboratories, Alcatel-Lucent, in Ireland. His responsibilities include the design and development of advanced highly efficient and linear transmitter architectures for base station cellular applications. He has taught at the University of Linz in Austria, the Institute of Microelectronics in Singapore, and the Moscow Technical University of Communications and Informatics. He has written over eighty scientific papers, has written four books, and is a Senior Member of IEEE.
- Preface xiiiIntroduction 1References 61 Passive Elements and Circuit Theory 91.1 Immittance Two-Port Network Parameters 91.2 Scattering Parameters 131.3 Interconnections of Two-Port Networks 171.4 Practical Two-Port Networks 201.4.1 Single-Element Networks 201.4.2 π- and T -Type Networks 211.5 Three-Port Network with Common Terminal 241.6 Lumped Elements 261.6.1 Inductors 261.6.2 Capacitors 291.7 Transmission Line 311.8 Types of Transmission Lines 351.8.1 Coaxial Line 351.8.2 Stripline 361.8.3 Microstrip Line 391.8.4 Slotline 411.8.5 Coplanar Waveguide 421.9 Noise 441.9.1 Noise Sources 441.9.2 Noise Figure 461.9.3 Flicker Noise 53References 532 Active Devices and Modeling 572.1 Diodes 572.1.1 Operation Principle 572.1.2 Schottky Diodes 592.1.3 p–i–n Diodes 612.1.4 Zener Diodes 622.2 Varactors 632.2.1 Varactor Modeling 632.2.2 MOS Varactor 652.3 MOSFETs 702.3.1 Small-Signal Equivalent Circuit 702.3.2 Nonlinear I–V Models 732.3.3 Nonlinear C–V Models 752.3.4 Charge Conservation 782.3.5 Gate–Source Resistance 792.3.6 Temperature Dependence 792.3.7 Noise Model 812.4 MESFETs and HEMTs 832.4.1 Small-Signal Equivalent Circuit 832.4.2 Determination of Equivalent Circuit Elements 852.4.3 Curtice Quadratic Nonlinear Model 882.4.4 Parker–Skellern Nonlinear Model 892.4.5 Chalmers (Angelov) Nonlinear Model 912.4.6 IAF (Berroth) Nonlinear Model 932.4.7 Noise Model 942.5 BJTs and HBTs 972.5.1 Small-Signal Equivalent Circuit 972.5.2 Determination of Equivalent Circuit Elements 982.5.3 Equivalence of Intrinsic π- and T -Type Topologies 1002.5.4 Nonlinear Bipolar Device Modeling 1022.5.5 Noise Model 105References 1073 Impedance Matching 1133.1 Main Principles 1133.2 Smith Chart 1163.3 Matching with Lumped Elements 1203.3.1 Analytic Design Technique 1203.3.2 Bipolar UHF Power Amplifier 1313.3.3 MOSFET VHF High-Power Amplifier 1353.4 Matching with Transmission Lines 1383.4.1 Analytic Design Technique 1383.4.2 Equivalence Between Circuits with Lumped and Distributed Parameters 1443.4.3 Narrowband Microwave Power Amplifier 1473.4.4 Broadband UHF High-Power Amplifier 1493.5 Matching Networks with Mixed Lumped and Distributed Elements 151References 1534 Power Transformers, Combiners, and Couplers 1554.1 Basic Properties 1554.1.1 Three-Port Networks 1554.1.2 Four-Port Networks 1564.2 Transmission-Line Transformers and Combiners 1584.3 Baluns 1684.4 Wilkinson Power Dividers/Combiners 1744.5 Microwave Hybrids 1824.6 Coupled-Line Directional Couplers 192References 1975 Filters 2015.1 Types of Filters 2015.2 Filter Design Using Image Parameter Method 2055.2.1 Constant-k Filter Sections 2055.2.2 m-Derived Filter Sections 2075.3 Filter Design Using Insertion Loss Method 2105.3.1 Maximally Flat Low-Pass Filter 2105.3.2 Equal-Ripple Low-Pass Filter 2135.3.3 Elliptic Function Low-Pass Filter 2165.3.4 Maximally Flat Group-Delay Low-Pass Filter 2195.4 Bandpass and Bandstop Transformation 2225.5 Transmission-Line Low-Pass Filter Implementation 2255.5.1 Richards’s Transformation 2255.5.2 Kuroda Identities 2265.5.3 Design Example 2285.6 Coupled-Line Filters 2285.6.1 Impedance and Admittance Inverters 2285.6.2 Coupled-Line Section 2315.6.3 Parallel-Coupled Bandpass Filters Using Half-Wavelength Resonators 2345.6.4 Interdigital, Combline, and Hairpin Bandpass Filters 2365.6.5 Microstrip Filters with Unequal Phase Velocities 2395.6.6 Bandpass and Bandstop Filters Using Quarter-Wavelength Resonators 2415.7 SAW and BAW Filters 243References 2506 Modulation and Modulators 2556.1 Amplitude Modulation 2556.1.1 Basic Principle 2556.1.2 Amplitude Modulators 2596.2 Single-Sideband Modulation 2626.2.1 Double-Sideband Modulation 2626.2.2 Single-Sideband Generation 2656.2.3 Single-Sideband Modulator 2666.3 Frequency Modulation 2676.3.1 Basic Principle 2686.3.2 Frequency Modulators 2736.4 Phase Modulation 2786.5 Digital Modulation 2836.5.1 Amplitude Shift Keying 2846.5.2 Frequency Shift Keying 2876.5.3 Phase Shift Keying 2896.5.4 Minimum Shift Keying 2966.5.5 Quadrature Amplitude Modulation 2996.5.6 Pulse Code Modulation 3006.6 Class-S Modulator 3026.7 Multiple Access Techniques 3046.7.1 Time and Frequency Division Multiplexing 3046.7.2 Frequency Division Multiple Access 3056.7.3 Time Division Multiple Access 3056.7.4 Code Division Multiple Access 306References 3087 Mixers and Multipliers 3117.1 Basic Theory 3117.2 Single-Diode Mixers 3137.3 Balanced Diode Mixers 3187.3.1 Single-Balanced Mixers 3187.3.2 Double-Balanced Mixers 3217.4 Transistor Mixers 3267.5 Dual-Gate FET Mixer 3297.6 Balanced Transistor Mixers 3317.6.1 Single-Balanced Mixers 3317.6.2 Double-Balanced Mixers 3347.7 Frequency Multipliers 338References 3448 Oscillators 3478.1 Oscillator Operation Principles 3478.1.1 Steady-State Operation Mode 3478.1.2 Start-Up Conditions 3498.2 Oscillator Configurations and Historical Aspect 3538.3 Self-Bias Condition 3588.4 Parallel Feedback Oscillator 3628.5 Series Feedback Oscillator 3658.6 Push–Push Oscillators 3688.7 Stability of Self-Oscillations 3728.8 Optimum Design Techniques 3768.8.1 Empirical Approach 3768.8.2 Analytic Approach 3798.9 Noise in Oscillators 3858.9.1 Parallel Feedback Oscillator 3868.9.2 Negative Resistance Oscillator 3928.9.3 Colpitts Oscillator 3948.9.4 Impulse Response Model 3978.10 Voltage-Controlled Oscillators 4078.11 Crystal Oscillators 4178.12 Dielectric Resonator Oscillators 423References 4289 Phase-Locked Loops 4339.1 Basic Loop Structure 4339.2 Analog Phase-Locked Loops 4359.3 Charge-Pump Phase-Locked Loops 4399.4 Digital Phase-Locked Loops 4419.5 Loop Components 4449.5.1 Phase Detector 4449.5.2 Loop Filter 4499.5.3 Frequency Divider 4549.5.4 Voltage-Controlled Oscillator 4579.6 Loop Parameters 4619.6.1 Lock Range 4619.6.2 Stability 4629.6.3 Transient Response 4639.6.4 Noise 4659.7 Phase Modulation Using Phase-Locked Loops 4669.8 Frequency Synthesizers 4699.8.1 Direct Analog Synthesizers 4699.8.2 Integer-N Synthesizers Using PLL 4699.8.3 Fractional-N Synthesizers Using PLL 4719.8.4 Direct Digital Synthesizers 473References 47410 Power Amplifier Design Fundamentals 47710.1 Power Gain and Stability 47710.2 Basic Classes of Operation: A, AB, B, and C 48710.3 Linearity 49610.4 Nonlinear Effect of Collector Capacitance 50310.5 DC Biasing 50610.6 Push–Pull Power Amplifiers 51510.7 Broadband Power Amplifiers 52210.8 Distributed Power Amplifiers 53710.9 Harmonic Tuning Using Load–Pull Techniques 54310.10 Thermal Characteristics 549References 55211 High-Efficiency Power Amplifiers 55711.1 Class D 55711.1.1 Voltage-Switching Configurations 55711.1.2 Current-Switching Configurations 56111.1.3 Drive and Transition Time 56411.2 Class F 56711.2.1 Idealized Class F Mode 56911.2.2 Class F with Quarterwave Transmission Line 57211.2.3 Effect of Saturation Resistance 57511.2.4 Load Networks with Lumped and Distributed Parameters 57711.3 Inverse Class F 58111.3.1 Idealized Inverse Class F Mode 58311.3.2 Inverse Class F with Quarterwave Transmission Line 58511.3.3 Load Networks with Lumped and Distributed Parameters 58611.4 Class E with Shunt Capacitance 58911.4.1 Optimum Load Network Parameters 59011.4.2 Saturation Resistance and Switching Time 59511.4.3 Load Network with Transmission Lines 59911.5 Class E with Finite dc-Feed Inductance 60111.5.1 General Analysis and Optimum Circuit Parameters 60111.5.2 Parallel-Circuit Class E 60511.5.3 Broadband Class E 61011.5.4 Power Gain 61311.6 Class E with Quarterwave Transmission Line 61511.6.1 General Analysis and Optimum Circuit Parameters 61511.6.2 Load Network with Zero Series Reactance 62211.6.3 Matching Circuits with Lumped and Distributed Parameters 62511.7 Class FE 62811.8 CAD Design Example: 1.75 GHz HBT Class E MMIC Power Amplifier 638References 65312 Linearization and Efficiency Enhancement Techniques 65712.1 Feedforward Amplifier Architecture 65712.2 Cross Cancellation Technique 66312.3 Reflect Forward Linearization Amplifier 66512.4 Predistortion Linearization 66612.5 Feedback Linearization 67212.6 Doherty Power Amplifier Architectures 67812.7 Outphasing Power Amplifiers 68512.8 Envelope Tracking 69112.9 Switched Multipath Power Amplifiers 69512.10 Kahn EER Technique and Digital Power Amplification 70212.10.1 Envelope Elimination and Restoration 70212.10.2 Pulse-Width Carrier Modulation 70412.10.3 Class S Amplifier 70612.10.4 Digital RF Amplification 706References 70913 Control Circuits 71713.1 Power Detector and VSWR Protection 71713.2 Switches 72213.3 Phase Shifters 72813.3.1 Diode Phase Shifters 72913.3.2 Schiffman 90◦ Phase Shifter 73613.3.3 MESFET Phase Shifters 73913.4 Attenuators 74113.5 Variable Gain Amplifiers 74613.6 Limiters 750References 75314 Transmitter Architectures 75914.1 Amplitude-Modulated Transmitters 75914.1.1 Collector Modulation 76014.1.2 Base Modulation 76214.1.3 Low-Level Modulation 76414.1.4 Amplitude Keying 76514.2 Single-Sideband Transmitters 76614.3 Frequency-Modulated Transmitters 76814.4 Television Transmitters 77214.5 Wireless Communication Transmitters 77614.6 Radar Transmitters 78214.6.1 Phased-Array Radars 78314.6.2 Automotive Radars 78614.6.3 Electronic Warfare 79114.7 Satellite Transmitters 79414.8 Ultra-Wideband Communication Transmitters 797References 802Index 809
Mer från samma författare
Broadband RF and Microwave Amplifiers
Andrei Grebennikov, Narendra Kumar, Binboga S. Yarman, USA) Grebennikov, Andrei (Microsemi Corporation, Aliso Viejo, California, Malaysia) Kumar, Narendra (University of Malaya, Kuala Lumpur, Turkey) Yarman, Binboga S. (Istanbul University, Binboga S Yarman
3 869 kr