Del 128 - Wiley Series in Microwave and Optical Engineering
Radio-Frequency Integrated-Circuit Engineering
Inbunden, Engelska, 2015
Av Cam Nguyen
2 809 kr
Produktinformation
- Utgivningsdatum2015-04-24
- Mått224 x 282 x 53 mm
- Vikt2 155 g
- SpråkEngelska
- SerieWiley Series in Microwave and Optical Engineering
- Antal sidor896
- FörlagJohn Wiley & Sons Inc
- EAN9780471398202
Mer från samma serie
Physics of Multiantenna Systems and Broadband Processing
T. K. Sarkar, Magdalena Salazar-Palma, Eric L. Mokole, USA) Sarkar, T. K. (Syracuse University, Spain) Salazar-Palma, Magdalena (Universidad Carlos III de Madrid, USA) Mokole, Eric L. (Naval Research Laboratory, T K Sarkar, Eric L Mokole
2 519 kr
Tillhör följande kategorier
Cam Nguyen, PhD, IEEE Fellow, is the Texas Instruments Endowed Professor of Electrical and Computer Engineering at Texas A&M University. He was Program Director at the National Science Foundation during 2003-2004, responsible for research programs in RF and wireless technologies. Over the past 35 years, including 12 years at TRW, Martin Marietta, Aeroject ElectroSystems, Hughes Aircraft and ITT Gilfillan, Professor Nguyen has led numerous RF projects for wireless communications, radar and sensing; developed many RF integrated circuits and systems up to 220 GHz; published five books, six book chapters, over 255 papers; and given more than 160 conference presentations.
- Preface xvii1 Introduction 1Problems 52 Fundamentals of Electromagnetics 62.1 EM Field Parameters 62.2 Maxwell’s Equations 72.3 Auxiliary Relations 82.3.1 Constitutive Relations 82.3.2 Current Relations 92.4 Sinusoidal Time-Varying Steady State 92.5 Boundary Conditions 102.5.1 General Boundary Conditions 112.5.2 Specific Boundary Conditions 112.6 Wave Equations 122.7 Power 132.8 Loss and Propagation Constant in Medium 142.9 Skin Depth 162.10 Surface Impedance 17Problems 193 Lumped Elements 203.1 Fundamentals of Lumped Elements 203.1.1 Basic Equations 233.2 Quality Factor of Lumped Elements 283.3 Modeling of Lumped Elements 303.4 Inductors 323.4.1 Inductor Configurations 323.4.2 Loss in Inductors 363.4.3 Equivalent-Circuit Models of Inductors 393.4.4 Resonance in Inductors 453.4.5 Quality Factor of Inductors 463.4.6 High Q Inductor Design Considerations 513.5 Lumped-Element Capacitors 603.5.1 Capacitor Configurations 603.5.2 Equivalent-Circuit Models of Capacitors 633.5.3 Resonance 683.5.4 Quality Factor 693.5.5 High Q Capacitor Design Considerations 713.6 Lumped-Element Resistors 723.6.1 Resistor Configurations 723.6.2 Basic Resistor Equations 723.6.3 Equivalent-Circuit Models of Resistors 75References 75Problems 764 Transmission Lines 854.1 Essentials of Transmission Lines 854.2 Transmission-Line Equations 864.2.1 General Transmission-Line Equations 864.2.2 Sinusoidal Steady-State Transmission-Line Equations 914.3 Transmission-Line Parameters 934.3.1 General Transmission Lines 934.3.2 Lossless Transmission Lines 964.3.3 Low Loss Transmission Lines 964.4 Per-Unit-Length Parameters R,L,C, and G 974.4.1 General Formulation 974.4.2 Formulation for Simple Transmission Lines 1044.5 Dielectric and Conductor Losses in Transmission Lines 1074.5.1 Dielectric Attenuation Constant 1084.5.2 Conductor Attenuation Constant 1094.6 Dispersion and Distortion in Transmission Lines 1114.6.1 Dispersion 1114.6.2 Distortion 1114.6.3 Distortion-Less Transmission Lines 1134.7 Group Velocity 1154.8 Impedance, Reflection Coefficients, and Standing-Wave Ratios 1174.8.1 Impedance 1174.8.2 Reflection Coefficients 1194.8.3 Standing-Wave Ratio 1204.8.4 Perfect Match and Total Reflection 1224.8.5 Lossless Transmission Lines 1234.9 Synthetic Transmission Lines 1264.10 Tem and Quasi-Tem Transmission-Line Parameters 1284.10.1 Static or Quasi-Static Analysis 1294.10.2 Dynamic Analysis 1304.11 Printed-Circuit Transmission Lines 1324.11.1 Microstrip Line 1334.11.2 CoplanarWaveguide 1354.11.3 Coplanar Strips 1384.11.4 Strip Line 1394.11.5 Slot Line 1414.11.6 Field Distributions 1424.12 Transmission Lines in RFICs 1444.12.1 Microstrip Line 1454.12.2 CoplanarWaveguide 1464.12.3 Coplanar Strips 1494.12.4 Strip Line 1494.12.5 Slot Line 1504.12.6 Transitions and Junctions Between Transmission Lines 1504.13 Multi-Conductor Transmission Lines 1524.13.1 Transmission-Line Equations 1524.13.2 Propagation Modes 1564.13.3 Characteristic Impedance and Admittance Matrix 1574.13.4 Mode Characteristic Impedances and Admittances 1594.13.5 Impedance and Admittance Matrix 1614.13.6 Lossless Multiconductor Transmission Lines 163References 173Problems 174Appendix 4: Transmission-Line Equations Derived From Maxwell’s Equations 1825 Resonators 1865.1 Fundamentals of Resonators 1865.1.1 Parallel Resonators 1875.1.2 Series Resonators 1885.2 Quality Factor 1895.2.1 Parallel Resonators 1905.2.2 Series Resonators 1935.2.3 Unloaded Quality Factor 1955.2.4 Loaded Quality Factor 1955.2.5 Evaluation of and Relation between Unloaded and Loaded Quality Factors 1985.3 Distributed Resonators 2055.3.1 Quality-Factor Characteristics 2065.3.2 Transmission-Line Resonators 2075.3.3 Waveguide Cavity Resonators 2165.4 Resonator’s Slope Parameters 2315.5 Transformation of Resonators 2315.5.1 Impedance and Admittance Inverters 2315.5.2 Examples of Resonator Transformation 236References 237Problems 2386 Impedance Matching 2446.1 Basic Impedance Matching 2446.1.1 Smith Chart 2446.2 Design of Impedance-Matching Networks 2486.2.1 Impedance-Matching Network Topologies 2496.2.2 Impedance Transformation through Series and Shunt Inductor and Capacitor 2496.2.3 Examples of Impedance-Matching Network Design 2526.2.4 Transmission-Line Impedance-Matching Networks 2556.3 Kuroda Identities 262References 266Problems 2667 Scattering Parameters 2717.1 Multiport Networks 2717.2 Impedance Matrix 2737.3 Admittance Matrix 2747.4 Impedance and Admittance Matrix in RF Circuit Analysis 2747.4.1 T-Network Representation of Two-Port RF Circuits 2757.4.2 π-Network Representation of Two-Port RF Circuits 2787.5 Scattering Matrix 2797.5.1 Fundamentals of Scattering Matrix 2797.5.2 Examples for Scattering Parameters 2877.5.3 Effect of Reference-Plane Change on Scattering Matrix 2887.5.4 Return Loss, Insertion Loss, and Gain 2907.6 Chain Matrix 2937.7 Scattering Transmission Matrix 2947.8 Conversion between Two-Port Parameters 2957.8.1 Conversion from [Z] to [ABCD] 295References 298Problems 2988 RF Passive Components 3048.1 Characteristics of Multiport RF Passive Components 3048.1.1 Characteristics of Three-Port Components 3048.1.2 Characteristics of Four-Port Components 3098.2 Directional Couplers 3118.2.1 Fundamentals of Directional Couplers 3118.2.2 Parallel-Coupled Directional Couplers 3138.3 Hybrids 3268.3.1 Hybrid T 3268.3.2 Ring Hybrid 3288.3.3 Branch-Line Coupler 3358.4 Power Dividers 3398.4.1 Even-Mode Analysis 3408.4.2 Odd-Mode Analysis 3428.4.3 Superimposition of Even and Odd Modes 3438.5 Filters 3458.5.1 Low Pass Filter 3458.5.2 High Pass Filter Design 3578.5.3 Band-Pass Filter Design 3598.5.4 Band-Stop Filter Design 3618.5.5 Filter Design Using Impedance and Admittance Inverters 364References 371Problems 3729 Fundamentals of CMOS Transistors For RFIC Design 3799.1 MOSFET Basics 3799.1.1 MOSFET Structure 3799.1.2 MOSFET Operation 3829.2 MOSFET Models 3869.2.1 Physics-Based Models 3879.2.2 Empirical Models 3879.2.3 SPICE Models 4029.2.4 Passive MOSFET Models 4049.3 Important MOSFET Frquencies 4079.3.1 fT 4089.3.2 fmax 4089.4 Other Important MOSFET Parameters 4099.5 Varactor Diodes 4099.5.1 Varactor Structure and Operation 4099.5.2 Varactor Model and Characteristics 410References 412Problems 41210 Stability 41810.1 Fundamentals of Stability 41810.2 Determination of Stable and Unstable Regions 42110.3 Stability Consideration for N-Port Circuits 427References 427Problems 42811 Amplifiers 43011.1 Fundamentals of Amplifier Design 43011.1.1 Power Gain 43011.1.2 Gain Design 43311.2 Low Noise Amplifiers 44311.2.1 Noise Figure Fundamentals 44311.2.2 MOSFET Noise Parameters 44611.2.3 Noise Figure of Multistage Amplifiers 44711.2.4 Noise-Figure Design 44811.2.5 Design for Gain and Noise Figure 45011.3 Design Examples 45111.3.1 Unilateral Amplifier Design 45111.3.2 Bilateral Amplifier Design 45411.4 Power Amplifiers 45511.4.1 Power-Amplifier Parameters 45511.4.2 Power-Amplifier Types 45811.5 Balanced Amplifiers 47011.5.1 Differential Amplifiers 47011.5.2 Ninety-Degree Balanced Amplifiers 48511.5.3 Push–Pull Amplifiers 48711.6 Broadband Amplifiers 48911.6.1 Compensated Matching Networks 48911.6.2 Distributed Amplifiers 49011.6.3 Feedback Amplifiers 52311.6.4 Cascoded Common-Source Amplifiers 54011.7 Current Mirrors 54811.7.1 Basic Current Mirror 55011.7.2 Cascode Current Mirror 550References 552Problems 553A11.1 Fundamentals of Signal Flow Graph 563A11.2 Signal Flow Graph of Two-Port Networks 563A11.2.1 Transistor’s Signal Flow Graph 563A11.2.2 Input Matching Network’s Signal Flow Graph 564A11.2.3 Output Matching Network’s Signal Flow Graph 565A11.2.4 Signal Flow Graph of the Composite Two-Port Network 566A11.3 Derivation of Network’s Parameters Using Signal Flow Graphs 566A11.3.1 Examples of Derivation 567A11.3.2 Derivation of Reflection Coefficients and Power Gain 568References 57112 Oscillators 57212.1 Principle of Oscillation 57212.1.1 Oscillation Conditions 57312.1.2 Oscillation Determination 57412.2 Fundamentals of Oscillator Design 57512.2.1 Basic Oscillators 57612.2.2 Feedback Oscillators 57912.3 Phase Noise 58712.3.1 Fundamentals of Phase Noise 58812.3.2 Phase Noise Modeling 59312.3.3 Low Phase-Noise Design Consideration 59912.3.4 Effects of Phase Noise on Systems 59912.3.5 Analysis Example of Effects of Phase Noise 60112.4 Oscillator Circuits 60212.4.1 Cross-Coupled Oscillators 60212.4.2 Distributed Oscillators 61212.4.3 Push-Push Oscillators 617References 626Problems 62713 Mixers 63313.1 Fundamentals of Mixers 63313.1.1 Mixing Principle 63313.1.2 Mixer Parameters 63613.2 Mixer Types 64113.2.1 Single-Ended Mixer 64213.2.2 Single-Balanced Mixer 64213.2.3 Double-Balanced Mixer 64613.2.4 Doubly Double-Balanced Mixer 64913.3 Other Mixers 65013.3.1 Passive Mixer 65013.3.2 Image-Reject Mixer 65113.3.3 Quadrature Mixer 65213.3.4 Distributed Mixer 65213.4 Mixer Analysis and Design 65613.4.1 Switching Mixer Fundamental 65613.4.2 Single-Ended Mixer 65813.4.3 Single-Balanced Mixer 66113.4.4 Double-Balanced Mixer 66313.4.5 Source Degeneration in Mixer Design 66513.5 Sampling Mixer 66713.5.1 Fundamentals of Sampling 66813.5.2 Sampling Theory 66913.5.3 Sampling Process 67013.5.4 Sample and Hold 67313.5.5 Sampling Switch 67813.5.6 Integrated Sampling Mixer 678References 689Problems 69014 Switches 69414.1 Fundamentals of Switches 69414.1.1 Switch Operation 69414.1.2 Important Parameters 69514.2 Analysis of Switching MOSFET 69714.2.1 Analysis of Shunt Transistor 69714.2.2 Analysis of Series Transistor 69814.2.3 Analysis of Combined Series and Shunt Transistors 69914.2.4 Selection of MOSFET 69914.2.5 Design Consideration for Improved Insertion Loss and Isolation 70114.3 SPST Switches 70214.3.1 SPST Switch Employing Two Parallel MOSFETs 70214.3.2 SPST Switch Employing Two Series MOSFETs 70314.3.3 SPST Switch Employing Two Series and Two Shunt MOSFETs 70314.3.4 SPST Switch Using Impedance or Admittance Inverters 70314.4 SPDT Switches 71214.4.1 SPDT Switch Topologies 71214.4.2 SPDT Switch Analysis 71314.5 Ultra-Wideband Switches 71414.5.1 Ultra-Wideband SPST Switch 71514.5.2 Ultra-Wideband T/R Switch 72114.6 Ultra-High-Isolation Switches 72714.6.1 Ultra-High-Isolation Switch Architecture and Analysis 72714.6.2 Ultra-High-Isolation SPST Switch Design 73314.7 Filter Switches 737References 739Problems 73915 RFIC Simulation, Layout, and Test 74715.1 RFIC Simulation 74815.1.1 DC Simulation 74915.1.2 Small-Signal AC Simulation 74915.1.3 Transient Simulation 74915.1.4 Periodic Steady State Simulation 74915.1.5 Harmonic-Balance Simulation 75015.1.6 Periodic Distortion Analysis 75115.1.7 Envelope Simulation 75115.1.8 Periodic Small Signal Analysis 75115.1.9 EM Simulation 75115.1.10 Statistical and Mismatch Simulation 75415.2 RFIC Layout 75415.2.1 General Layout Issues 75415.2.2 Passive and Active Component Layout 75515.3 RFIC Measurement 75815.3.1 On-Wafer Measurement 75915.3.2 Off-Chip Measurement 782References 784Problems 78416 Systems 78816.1 Fundamentals of Systems 78816.1.1 Friis Transmission Equation 78816.1.2 System Equation 79016.1.3 Signal-to-Noise Ratio of System 79116.1.4 Receiver Sensitivity 79316.1.5 System Performance Factor 79416.1.6 Power 79616.1.7 Angle and Range Resolution 79716.1.8 Range Accuracy 80016.2 System Type 80116.2.1 Pulse System 80116.2.2 FMCW System 80316.2.3 Receiver Architectures 808References 826Problems 826Appendix: RFIC Design Example: Mixer 830A1.1 Circuit Design Specifications and General Design Information 830A1.2 Mixer Design 830A1.2.1 Single-Ended to Differential Input Active Balun 832A1.2.2 Double-Balanced Gilbert Cell 832A1.2.3 Differential to Single-Ended Output Active Balun 834A1.2.4 Band-Pass Filter 834A1.3 Mixer Optimization and Layout 835A1.4 Simulation Results 836A1.4.1 Stability 836A1.4.2 Return Loss 836A1.4.3 Conversion Gain 836A1.4.4 Noise Figure 837A1.4.5 Other Mixer Performance 837A1.5 Measured Results 838References 840Index 841